This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The C^n object is a function. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fncpn | |- ( S C_ CC -> ( C^n ` S ) Fn NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | |- ( CC ^pm S ) e. _V |
|
| 2 | 1 | rabex | |- { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } e. _V |
| 3 | eqid | |- ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) = ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) |
|
| 4 | 2 3 | fnmpti | |- ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) Fn NN0 |
| 5 | cpnfval | |- ( S C_ CC -> ( C^n ` S ) = ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) ) |
|
| 6 | 5 | fneq1d | |- ( S C_ CC -> ( ( C^n ` S ) Fn NN0 <-> ( n e. NN0 |-> { f e. ( CC ^pm S ) | ( ( S Dn f ) ` n ) e. ( dom f -cn-> CC ) } ) Fn NN0 ) ) |
| 7 | 4 6 | mpbiri | |- ( S C_ CC -> ( C^n ` S ) Fn NN0 ) |