This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the scalar field of a subcomplex pre-Hilbert space contains the imaginary unit _i , then it is closed under square roots (i.e., it is quadratically closed). (Contributed by Mario Carneiro, 11-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsca.f | |- F = ( Scalar ` W ) |
|
| cphsca.k | |- K = ( Base ` F ) |
||
| Assertion | cphsqrtcl3 | |- ( ( W e. CPreHil /\ _i e. K /\ A e. K ) -> ( sqrt ` A ) e. K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsca.f | |- F = ( Scalar ` W ) |
|
| 2 | cphsca.k | |- K = ( Base ` F ) |
|
| 3 | simpl1 | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> W e. CPreHil ) |
|
| 4 | 1 2 | cphsubrg | |- ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) |
| 5 | 3 4 | syl | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> K e. ( SubRing ` CCfld ) ) |
| 6 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 7 | 6 | subrgss | |- ( K e. ( SubRing ` CCfld ) -> K C_ CC ) |
| 8 | 5 7 | syl | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> K C_ CC ) |
| 9 | simpl3 | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> A e. K ) |
|
| 10 | 8 9 | sseldd | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> A e. CC ) |
| 11 | 10 | negnegd | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> -u -u A = A ) |
| 12 | 11 | fveq2d | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> ( sqrt ` -u -u A ) = ( sqrt ` A ) ) |
| 13 | rpre | |- ( -u A e. RR+ -> -u A e. RR ) |
|
| 14 | 13 | adantl | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> -u A e. RR ) |
| 15 | rpge0 | |- ( -u A e. RR+ -> 0 <_ -u A ) |
|
| 16 | 15 | adantl | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> 0 <_ -u A ) |
| 17 | 14 16 | sqrtnegd | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> ( sqrt ` -u -u A ) = ( _i x. ( sqrt ` -u A ) ) ) |
| 18 | 12 17 | eqtr3d | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> ( sqrt ` A ) = ( _i x. ( sqrt ` -u A ) ) ) |
| 19 | simpl2 | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> _i e. K ) |
|
| 20 | cnfldneg | |- ( A e. CC -> ( ( invg ` CCfld ) ` A ) = -u A ) |
|
| 21 | 10 20 | syl | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> ( ( invg ` CCfld ) ` A ) = -u A ) |
| 22 | subrgsubg | |- ( K e. ( SubRing ` CCfld ) -> K e. ( SubGrp ` CCfld ) ) |
|
| 23 | 5 22 | syl | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> K e. ( SubGrp ` CCfld ) ) |
| 24 | eqid | |- ( invg ` CCfld ) = ( invg ` CCfld ) |
|
| 25 | 24 | subginvcl | |- ( ( K e. ( SubGrp ` CCfld ) /\ A e. K ) -> ( ( invg ` CCfld ) ` A ) e. K ) |
| 26 | 23 9 25 | syl2anc | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> ( ( invg ` CCfld ) ` A ) e. K ) |
| 27 | 21 26 | eqeltrrd | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> -u A e. K ) |
| 28 | 1 2 | cphsqrtcl | |- ( ( W e. CPreHil /\ ( -u A e. K /\ -u A e. RR /\ 0 <_ -u A ) ) -> ( sqrt ` -u A ) e. K ) |
| 29 | 3 27 14 16 28 | syl13anc | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> ( sqrt ` -u A ) e. K ) |
| 30 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 31 | 30 | subrgmcl | |- ( ( K e. ( SubRing ` CCfld ) /\ _i e. K /\ ( sqrt ` -u A ) e. K ) -> ( _i x. ( sqrt ` -u A ) ) e. K ) |
| 32 | 5 19 29 31 | syl3anc | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> ( _i x. ( sqrt ` -u A ) ) e. K ) |
| 33 | 18 32 | eqeltrd | |- ( ( ( W e. CPreHil /\ _i e. K /\ A e. K ) /\ -u A e. RR+ ) -> ( sqrt ` A ) e. K ) |
| 34 | 33 | ex | |- ( ( W e. CPreHil /\ _i e. K /\ A e. K ) -> ( -u A e. RR+ -> ( sqrt ` A ) e. K ) ) |
| 35 | 1 2 | cphsqrtcl2 | |- ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) -> ( sqrt ` A ) e. K ) |
| 36 | 35 | 3expia | |- ( ( W e. CPreHil /\ A e. K ) -> ( -. -u A e. RR+ -> ( sqrt ` A ) e. K ) ) |
| 37 | 36 | 3adant2 | |- ( ( W e. CPreHil /\ _i e. K /\ A e. K ) -> ( -. -u A e. RR+ -> ( sqrt ` A ) e. K ) ) |
| 38 | 34 37 | pm2.61d | |- ( ( W e. CPreHil /\ _i e. K /\ A e. K ) -> ( sqrt ` A ) e. K ) |