This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar field of a subcomplex pre-Hilbert space is closed under reciprocal. (Contributed by Mario Carneiro, 11-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsca.f | |- F = ( Scalar ` W ) |
|
| cphsca.k | |- K = ( Base ` F ) |
||
| Assertion | cphdivcl | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( A / B ) e. K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsca.f | |- F = ( Scalar ` W ) |
|
| 2 | cphsca.k | |- K = ( Base ` F ) |
|
| 3 | 1 2 | cphsubrg | |- ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) |
| 4 | 3 | adantr | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> K e. ( SubRing ` CCfld ) ) |
| 5 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 6 | 5 | subrgss | |- ( K e. ( SubRing ` CCfld ) -> K C_ CC ) |
| 7 | 4 6 | syl | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> K C_ CC ) |
| 8 | simpr1 | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> A e. K ) |
|
| 9 | 7 8 | sseldd | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> A e. CC ) |
| 10 | simpr2 | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> B e. K ) |
|
| 11 | 7 10 | sseldd | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> B e. CC ) |
| 12 | simpr3 | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> B =/= 0 ) |
|
| 13 | 9 11 12 | divrecd | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
| 14 | 1 2 | cphreccl | |- ( ( W e. CPreHil /\ B e. K /\ B =/= 0 ) -> ( 1 / B ) e. K ) |
| 15 | 14 | 3adant3r1 | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( 1 / B ) e. K ) |
| 16 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 17 | 16 | subrgmcl | |- ( ( K e. ( SubRing ` CCfld ) /\ A e. K /\ ( 1 / B ) e. K ) -> ( A x. ( 1 / B ) ) e. K ) |
| 18 | 4 8 15 17 | syl3anc | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( A x. ( 1 / B ) ) e. K ) |
| 19 | 13 18 | eqeltrd | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. K /\ B =/= 0 ) ) -> ( A / B ) e. K ) |