This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of fmptco where ph needn't be distinct from x . (Contributed by NM, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmptcof.1 | |- ( ph -> A. x e. A R e. B ) |
|
| fmptcof.2 | |- ( ph -> F = ( x e. A |-> R ) ) |
||
| fmptcof.3 | |- ( ph -> G = ( y e. B |-> S ) ) |
||
| fmptcof.4 | |- ( y = R -> S = T ) |
||
| Assertion | fmptcof | |- ( ph -> ( G o. F ) = ( x e. A |-> T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptcof.1 | |- ( ph -> A. x e. A R e. B ) |
|
| 2 | fmptcof.2 | |- ( ph -> F = ( x e. A |-> R ) ) |
|
| 3 | fmptcof.3 | |- ( ph -> G = ( y e. B |-> S ) ) |
|
| 4 | fmptcof.4 | |- ( y = R -> S = T ) |
|
| 5 | nfcsb1v | |- F/_ x [_ z / x ]_ R |
|
| 6 | 5 | nfel1 | |- F/ x [_ z / x ]_ R e. B |
| 7 | csbeq1a | |- ( x = z -> R = [_ z / x ]_ R ) |
|
| 8 | 7 | eleq1d | |- ( x = z -> ( R e. B <-> [_ z / x ]_ R e. B ) ) |
| 9 | 6 8 | rspc | |- ( z e. A -> ( A. x e. A R e. B -> [_ z / x ]_ R e. B ) ) |
| 10 | 1 9 | mpan9 | |- ( ( ph /\ z e. A ) -> [_ z / x ]_ R e. B ) |
| 11 | nfcv | |- F/_ z R |
|
| 12 | 11 5 7 | cbvmpt | |- ( x e. A |-> R ) = ( z e. A |-> [_ z / x ]_ R ) |
| 13 | 2 12 | eqtrdi | |- ( ph -> F = ( z e. A |-> [_ z / x ]_ R ) ) |
| 14 | nfcv | |- F/_ w S |
|
| 15 | nfcsb1v | |- F/_ y [_ w / y ]_ S |
|
| 16 | csbeq1a | |- ( y = w -> S = [_ w / y ]_ S ) |
|
| 17 | 14 15 16 | cbvmpt | |- ( y e. B |-> S ) = ( w e. B |-> [_ w / y ]_ S ) |
| 18 | 3 17 | eqtrdi | |- ( ph -> G = ( w e. B |-> [_ w / y ]_ S ) ) |
| 19 | csbeq1 | |- ( w = [_ z / x ]_ R -> [_ w / y ]_ S = [_ [_ z / x ]_ R / y ]_ S ) |
|
| 20 | 10 13 18 19 | fmptco | |- ( ph -> ( G o. F ) = ( z e. A |-> [_ [_ z / x ]_ R / y ]_ S ) ) |
| 21 | nfcv | |- F/_ z [_ R / y ]_ S |
|
| 22 | nfcv | |- F/_ x S |
|
| 23 | 5 22 | nfcsbw | |- F/_ x [_ [_ z / x ]_ R / y ]_ S |
| 24 | 7 | csbeq1d | |- ( x = z -> [_ R / y ]_ S = [_ [_ z / x ]_ R / y ]_ S ) |
| 25 | 21 23 24 | cbvmpt | |- ( x e. A |-> [_ R / y ]_ S ) = ( z e. A |-> [_ [_ z / x ]_ R / y ]_ S ) |
| 26 | 20 25 | eqtr4di | |- ( ph -> ( G o. F ) = ( x e. A |-> [_ R / y ]_ S ) ) |
| 27 | eqid | |- A = A |
|
| 28 | nfcvd | |- ( R e. B -> F/_ y T ) |
|
| 29 | 28 4 | csbiegf | |- ( R e. B -> [_ R / y ]_ S = T ) |
| 30 | 29 | ralimi | |- ( A. x e. A R e. B -> A. x e. A [_ R / y ]_ S = T ) |
| 31 | mpteq12 | |- ( ( A = A /\ A. x e. A [_ R / y ]_ S = T ) -> ( x e. A |-> [_ R / y ]_ S ) = ( x e. A |-> T ) ) |
|
| 32 | 27 30 31 | sylancr | |- ( A. x e. A R e. B -> ( x e. A |-> [_ R / y ]_ S ) = ( x e. A |-> T ) ) |
| 33 | 1 32 | syl | |- ( ph -> ( x e. A |-> [_ R / y ]_ S ) = ( x e. A |-> T ) ) |
| 34 | 26 33 | eqtrd | |- ( ph -> ( G o. F ) = ( x e. A |-> T ) ) |