This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cosord . (Contributed by Mario Carneiro, 10-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cosord.1 | |- ( ph -> A e. ( 0 [,] _pi ) ) |
|
| cosord.2 | |- ( ph -> B e. ( 0 [,] _pi ) ) |
||
| cosord.3 | |- ( ph -> A < B ) |
||
| Assertion | cosordlem | |- ( ph -> ( cos ` B ) < ( cos ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosord.1 | |- ( ph -> A e. ( 0 [,] _pi ) ) |
|
| 2 | cosord.2 | |- ( ph -> B e. ( 0 [,] _pi ) ) |
|
| 3 | cosord.3 | |- ( ph -> A < B ) |
|
| 4 | 0re | |- 0 e. RR |
|
| 5 | pire | |- _pi e. RR |
|
| 6 | 4 5 | elicc2i | |- ( B e. ( 0 [,] _pi ) <-> ( B e. RR /\ 0 <_ B /\ B <_ _pi ) ) |
| 7 | 2 6 | sylib | |- ( ph -> ( B e. RR /\ 0 <_ B /\ B <_ _pi ) ) |
| 8 | 7 | simp1d | |- ( ph -> B e. RR ) |
| 9 | 8 | recnd | |- ( ph -> B e. CC ) |
| 10 | 4 5 | elicc2i | |- ( A e. ( 0 [,] _pi ) <-> ( A e. RR /\ 0 <_ A /\ A <_ _pi ) ) |
| 11 | 1 10 | sylib | |- ( ph -> ( A e. RR /\ 0 <_ A /\ A <_ _pi ) ) |
| 12 | 11 | simp1d | |- ( ph -> A e. RR ) |
| 13 | 12 | recnd | |- ( ph -> A e. CC ) |
| 14 | subcos | |- ( ( B e. CC /\ A e. CC ) -> ( ( cos ` A ) - ( cos ` B ) ) = ( 2 x. ( ( sin ` ( ( B + A ) / 2 ) ) x. ( sin ` ( ( B - A ) / 2 ) ) ) ) ) |
|
| 15 | 9 13 14 | syl2anc | |- ( ph -> ( ( cos ` A ) - ( cos ` B ) ) = ( 2 x. ( ( sin ` ( ( B + A ) / 2 ) ) x. ( sin ` ( ( B - A ) / 2 ) ) ) ) ) |
| 16 | 2rp | |- 2 e. RR+ |
|
| 17 | 8 12 | readdcld | |- ( ph -> ( B + A ) e. RR ) |
| 18 | 17 | rehalfcld | |- ( ph -> ( ( B + A ) / 2 ) e. RR ) |
| 19 | 18 | resincld | |- ( ph -> ( sin ` ( ( B + A ) / 2 ) ) e. RR ) |
| 20 | 4 | a1i | |- ( ph -> 0 e. RR ) |
| 21 | 11 | simp2d | |- ( ph -> 0 <_ A ) |
| 22 | 20 12 8 21 3 | lelttrd | |- ( ph -> 0 < B ) |
| 23 | 8 12 22 21 | addgtge0d | |- ( ph -> 0 < ( B + A ) ) |
| 24 | 2re | |- 2 e. RR |
|
| 25 | 2pos | |- 0 < 2 |
|
| 26 | divgt0 | |- ( ( ( ( B + A ) e. RR /\ 0 < ( B + A ) ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 < ( ( B + A ) / 2 ) ) |
|
| 27 | 24 25 26 | mpanr12 | |- ( ( ( B + A ) e. RR /\ 0 < ( B + A ) ) -> 0 < ( ( B + A ) / 2 ) ) |
| 28 | 17 23 27 | syl2anc | |- ( ph -> 0 < ( ( B + A ) / 2 ) ) |
| 29 | 5 | a1i | |- ( ph -> _pi e. RR ) |
| 30 | 12 8 8 3 | ltadd2dd | |- ( ph -> ( B + A ) < ( B + B ) ) |
| 31 | 9 | 2timesd | |- ( ph -> ( 2 x. B ) = ( B + B ) ) |
| 32 | 30 31 | breqtrrd | |- ( ph -> ( B + A ) < ( 2 x. B ) ) |
| 33 | 24 | a1i | |- ( ph -> 2 e. RR ) |
| 34 | 25 | a1i | |- ( ph -> 0 < 2 ) |
| 35 | ltdivmul | |- ( ( ( B + A ) e. RR /\ B e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( ( B + A ) / 2 ) < B <-> ( B + A ) < ( 2 x. B ) ) ) |
|
| 36 | 17 8 33 34 35 | syl112anc | |- ( ph -> ( ( ( B + A ) / 2 ) < B <-> ( B + A ) < ( 2 x. B ) ) ) |
| 37 | 32 36 | mpbird | |- ( ph -> ( ( B + A ) / 2 ) < B ) |
| 38 | 7 | simp3d | |- ( ph -> B <_ _pi ) |
| 39 | 18 8 29 37 38 | ltletrd | |- ( ph -> ( ( B + A ) / 2 ) < _pi ) |
| 40 | 0xr | |- 0 e. RR* |
|
| 41 | 5 | rexri | |- _pi e. RR* |
| 42 | elioo2 | |- ( ( 0 e. RR* /\ _pi e. RR* ) -> ( ( ( B + A ) / 2 ) e. ( 0 (,) _pi ) <-> ( ( ( B + A ) / 2 ) e. RR /\ 0 < ( ( B + A ) / 2 ) /\ ( ( B + A ) / 2 ) < _pi ) ) ) |
|
| 43 | 40 41 42 | mp2an | |- ( ( ( B + A ) / 2 ) e. ( 0 (,) _pi ) <-> ( ( ( B + A ) / 2 ) e. RR /\ 0 < ( ( B + A ) / 2 ) /\ ( ( B + A ) / 2 ) < _pi ) ) |
| 44 | 18 28 39 43 | syl3anbrc | |- ( ph -> ( ( B + A ) / 2 ) e. ( 0 (,) _pi ) ) |
| 45 | sinq12gt0 | |- ( ( ( B + A ) / 2 ) e. ( 0 (,) _pi ) -> 0 < ( sin ` ( ( B + A ) / 2 ) ) ) |
|
| 46 | 44 45 | syl | |- ( ph -> 0 < ( sin ` ( ( B + A ) / 2 ) ) ) |
| 47 | 19 46 | elrpd | |- ( ph -> ( sin ` ( ( B + A ) / 2 ) ) e. RR+ ) |
| 48 | 8 12 | resubcld | |- ( ph -> ( B - A ) e. RR ) |
| 49 | 48 | rehalfcld | |- ( ph -> ( ( B - A ) / 2 ) e. RR ) |
| 50 | 49 | resincld | |- ( ph -> ( sin ` ( ( B - A ) / 2 ) ) e. RR ) |
| 51 | 12 8 | posdifd | |- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
| 52 | 3 51 | mpbid | |- ( ph -> 0 < ( B - A ) ) |
| 53 | divgt0 | |- ( ( ( ( B - A ) e. RR /\ 0 < ( B - A ) ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 < ( ( B - A ) / 2 ) ) |
|
| 54 | 24 25 53 | mpanr12 | |- ( ( ( B - A ) e. RR /\ 0 < ( B - A ) ) -> 0 < ( ( B - A ) / 2 ) ) |
| 55 | 48 52 54 | syl2anc | |- ( ph -> 0 < ( ( B - A ) / 2 ) ) |
| 56 | rehalfcl | |- ( _pi e. RR -> ( _pi / 2 ) e. RR ) |
|
| 57 | 5 56 | mp1i | |- ( ph -> ( _pi / 2 ) e. RR ) |
| 58 | 8 12 | subge02d | |- ( ph -> ( 0 <_ A <-> ( B - A ) <_ B ) ) |
| 59 | 21 58 | mpbid | |- ( ph -> ( B - A ) <_ B ) |
| 60 | 48 8 29 59 38 | letrd | |- ( ph -> ( B - A ) <_ _pi ) |
| 61 | lediv1 | |- ( ( ( B - A ) e. RR /\ _pi e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( B - A ) <_ _pi <-> ( ( B - A ) / 2 ) <_ ( _pi / 2 ) ) ) |
|
| 62 | 48 29 33 34 61 | syl112anc | |- ( ph -> ( ( B - A ) <_ _pi <-> ( ( B - A ) / 2 ) <_ ( _pi / 2 ) ) ) |
| 63 | 60 62 | mpbid | |- ( ph -> ( ( B - A ) / 2 ) <_ ( _pi / 2 ) ) |
| 64 | pirp | |- _pi e. RR+ |
|
| 65 | rphalflt | |- ( _pi e. RR+ -> ( _pi / 2 ) < _pi ) |
|
| 66 | 64 65 | mp1i | |- ( ph -> ( _pi / 2 ) < _pi ) |
| 67 | 49 57 29 63 66 | lelttrd | |- ( ph -> ( ( B - A ) / 2 ) < _pi ) |
| 68 | elioo2 | |- ( ( 0 e. RR* /\ _pi e. RR* ) -> ( ( ( B - A ) / 2 ) e. ( 0 (,) _pi ) <-> ( ( ( B - A ) / 2 ) e. RR /\ 0 < ( ( B - A ) / 2 ) /\ ( ( B - A ) / 2 ) < _pi ) ) ) |
|
| 69 | 40 41 68 | mp2an | |- ( ( ( B - A ) / 2 ) e. ( 0 (,) _pi ) <-> ( ( ( B - A ) / 2 ) e. RR /\ 0 < ( ( B - A ) / 2 ) /\ ( ( B - A ) / 2 ) < _pi ) ) |
| 70 | 49 55 67 69 | syl3anbrc | |- ( ph -> ( ( B - A ) / 2 ) e. ( 0 (,) _pi ) ) |
| 71 | sinq12gt0 | |- ( ( ( B - A ) / 2 ) e. ( 0 (,) _pi ) -> 0 < ( sin ` ( ( B - A ) / 2 ) ) ) |
|
| 72 | 70 71 | syl | |- ( ph -> 0 < ( sin ` ( ( B - A ) / 2 ) ) ) |
| 73 | 50 72 | elrpd | |- ( ph -> ( sin ` ( ( B - A ) / 2 ) ) e. RR+ ) |
| 74 | 47 73 | rpmulcld | |- ( ph -> ( ( sin ` ( ( B + A ) / 2 ) ) x. ( sin ` ( ( B - A ) / 2 ) ) ) e. RR+ ) |
| 75 | rpmulcl | |- ( ( 2 e. RR+ /\ ( ( sin ` ( ( B + A ) / 2 ) ) x. ( sin ` ( ( B - A ) / 2 ) ) ) e. RR+ ) -> ( 2 x. ( ( sin ` ( ( B + A ) / 2 ) ) x. ( sin ` ( ( B - A ) / 2 ) ) ) ) e. RR+ ) |
|
| 76 | 16 74 75 | sylancr | |- ( ph -> ( 2 x. ( ( sin ` ( ( B + A ) / 2 ) ) x. ( sin ` ( ( B - A ) / 2 ) ) ) ) e. RR+ ) |
| 77 | 15 76 | eqeltrd | |- ( ph -> ( ( cos ` A ) - ( cos ` B ) ) e. RR+ ) |
| 78 | 8 | recoscld | |- ( ph -> ( cos ` B ) e. RR ) |
| 79 | 12 | recoscld | |- ( ph -> ( cos ` A ) e. RR ) |
| 80 | difrp | |- ( ( ( cos ` B ) e. RR /\ ( cos ` A ) e. RR ) -> ( ( cos ` B ) < ( cos ` A ) <-> ( ( cos ` A ) - ( cos ` B ) ) e. RR+ ) ) |
|
| 81 | 78 79 80 | syl2anc | |- ( ph -> ( ( cos ` B ) < ( cos ` A ) <-> ( ( cos ` A ) - ( cos ` B ) ) e. RR+ ) ) |
| 82 | 77 81 | mpbird | |- ( ph -> ( cos ` B ) < ( cos ` A ) ) |