This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by a number greater than or equal to 1. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lemulge12 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 1 <_ B ) ) -> A <_ ( B x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lemulge11 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 1 <_ B ) ) -> A <_ ( A x. B ) ) |
|
| 2 | recn | |- ( A e. RR -> A e. CC ) |
|
| 3 | recn | |- ( B e. RR -> B e. CC ) |
|
| 4 | mulcom | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
|
| 5 | 2 3 4 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) = ( B x. A ) ) |
| 6 | 5 | breq2d | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ ( A x. B ) <-> A <_ ( B x. A ) ) ) |
| 7 | 6 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 1 <_ B ) ) -> ( A <_ ( A x. B ) <-> A <_ ( B x. A ) ) ) |
| 8 | 1 7 | mpbid | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 1 <_ B ) ) -> A <_ ( B x. A ) ) |