This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosine is less than one between zero and 2 x. _pi . (Contributed by Jim Kingdon, 23-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos02pilt1 | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( cos ` A ) < 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> A e. RR ) |
|
| 2 | 1 | recoscld | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( cos ` A ) e. RR ) |
| 3 | 1red | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 1 e. RR ) |
|
| 4 | cosbnd | |- ( A e. RR -> ( -u 1 <_ ( cos ` A ) /\ ( cos ` A ) <_ 1 ) ) |
|
| 5 | 4 | simprd | |- ( A e. RR -> ( cos ` A ) <_ 1 ) |
| 6 | 1 5 | syl | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( cos ` A ) <_ 1 ) |
| 7 | 0zd | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 0 e. ZZ ) |
|
| 8 | 2re | |- 2 e. RR |
|
| 9 | pire | |- _pi e. RR |
|
| 10 | 8 9 | remulcli | |- ( 2 x. _pi ) e. RR |
| 11 | 10 | a1i | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( 2 x. _pi ) e. RR ) |
| 12 | 0xr | |- 0 e. RR* |
|
| 13 | 10 | rexri | |- ( 2 x. _pi ) e. RR* |
| 14 | elioo2 | |- ( ( 0 e. RR* /\ ( 2 x. _pi ) e. RR* ) -> ( A e. ( 0 (,) ( 2 x. _pi ) ) <-> ( A e. RR /\ 0 < A /\ A < ( 2 x. _pi ) ) ) ) |
|
| 15 | 12 13 14 | mp2an | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) <-> ( A e. RR /\ 0 < A /\ A < ( 2 x. _pi ) ) ) |
| 16 | 15 | simp2bi | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 0 < A ) |
| 17 | 2rp | |- 2 e. RR+ |
|
| 18 | pirp | |- _pi e. RR+ |
|
| 19 | rpmulcl | |- ( ( 2 e. RR+ /\ _pi e. RR+ ) -> ( 2 x. _pi ) e. RR+ ) |
|
| 20 | 17 18 19 | mp2an | |- ( 2 x. _pi ) e. RR+ |
| 21 | rpgt0 | |- ( ( 2 x. _pi ) e. RR+ -> 0 < ( 2 x. _pi ) ) |
|
| 22 | 20 21 | mp1i | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 0 < ( 2 x. _pi ) ) |
| 23 | 1 11 16 22 | divgt0d | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 0 < ( A / ( 2 x. _pi ) ) ) |
| 24 | 20 | a1i | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( 2 x. _pi ) e. RR+ ) |
| 25 | 15 | simp3bi | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> A < ( 2 x. _pi ) ) |
| 26 | 1 11 24 25 | ltdiv1dd | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( A / ( 2 x. _pi ) ) < ( ( 2 x. _pi ) / ( 2 x. _pi ) ) ) |
| 27 | 11 | recnd | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( 2 x. _pi ) e. CC ) |
| 28 | 22 | gt0ne0d | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( 2 x. _pi ) =/= 0 ) |
| 29 | 27 28 | dividd | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( ( 2 x. _pi ) / ( 2 x. _pi ) ) = 1 ) |
| 30 | 26 29 | breqtrd | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( A / ( 2 x. _pi ) ) < 1 ) |
| 31 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 32 | 30 31 | breqtrrdi | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( A / ( 2 x. _pi ) ) < ( 0 + 1 ) ) |
| 33 | btwnnz | |- ( ( 0 e. ZZ /\ 0 < ( A / ( 2 x. _pi ) ) /\ ( A / ( 2 x. _pi ) ) < ( 0 + 1 ) ) -> -. ( A / ( 2 x. _pi ) ) e. ZZ ) |
|
| 34 | 7 23 32 33 | syl3anc | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> -. ( A / ( 2 x. _pi ) ) e. ZZ ) |
| 35 | 1 | recnd | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> A e. CC ) |
| 36 | coseq1 | |- ( A e. CC -> ( ( cos ` A ) = 1 <-> ( A / ( 2 x. _pi ) ) e. ZZ ) ) |
|
| 37 | 35 36 | syl | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( ( cos ` A ) = 1 <-> ( A / ( 2 x. _pi ) ) e. ZZ ) ) |
| 38 | 34 37 | mtbird | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> -. ( cos ` A ) = 1 ) |
| 39 | 38 | neqned | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( cos ` A ) =/= 1 ) |
| 40 | 39 | necomd | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> 1 =/= ( cos ` A ) ) |
| 41 | 2 3 6 40 | leneltd | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( cos ` A ) < 1 ) |