This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzmhm.z | |- Z = ( Cntz ` G ) |
|
| cntzmhm.y | |- Y = ( Cntz ` H ) |
||
| Assertion | cntzmhm | |- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( F ` A ) e. ( Y ` ( F " S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzmhm.z | |- Z = ( Cntz ` G ) |
|
| 2 | cntzmhm.y | |- Y = ( Cntz ` H ) |
|
| 3 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 4 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 5 | 3 4 | mhmf | |- ( F e. ( G MndHom H ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
| 6 | 3 1 | cntzssv | |- ( Z ` S ) C_ ( Base ` G ) |
| 7 | 6 | sseli | |- ( A e. ( Z ` S ) -> A e. ( Base ` G ) ) |
| 8 | ffvelcdm | |- ( ( F : ( Base ` G ) --> ( Base ` H ) /\ A e. ( Base ` G ) ) -> ( F ` A ) e. ( Base ` H ) ) |
|
| 9 | 5 7 8 | syl2an | |- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( F ` A ) e. ( Base ` H ) ) |
| 10 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 11 | 10 1 | cntzi | |- ( ( A e. ( Z ` S ) /\ x e. S ) -> ( A ( +g ` G ) x ) = ( x ( +g ` G ) A ) ) |
| 12 | 11 | adantll | |- ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> ( A ( +g ` G ) x ) = ( x ( +g ` G ) A ) ) |
| 13 | 12 | fveq2d | |- ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> ( F ` ( A ( +g ` G ) x ) ) = ( F ` ( x ( +g ` G ) A ) ) ) |
| 14 | simpll | |- ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> F e. ( G MndHom H ) ) |
|
| 15 | 7 | ad2antlr | |- ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> A e. ( Base ` G ) ) |
| 16 | 3 1 | cntzrcl | |- ( A e. ( Z ` S ) -> ( G e. _V /\ S C_ ( Base ` G ) ) ) |
| 17 | 16 | adantl | |- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( G e. _V /\ S C_ ( Base ` G ) ) ) |
| 18 | 17 | simprd | |- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> S C_ ( Base ` G ) ) |
| 19 | 18 | sselda | |- ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> x e. ( Base ` G ) ) |
| 20 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 21 | 3 10 20 | mhmlin | |- ( ( F e. ( G MndHom H ) /\ A e. ( Base ` G ) /\ x e. ( Base ` G ) ) -> ( F ` ( A ( +g ` G ) x ) ) = ( ( F ` A ) ( +g ` H ) ( F ` x ) ) ) |
| 22 | 14 15 19 21 | syl3anc | |- ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> ( F ` ( A ( +g ` G ) x ) ) = ( ( F ` A ) ( +g ` H ) ( F ` x ) ) ) |
| 23 | 3 10 20 | mhmlin | |- ( ( F e. ( G MndHom H ) /\ x e. ( Base ` G ) /\ A e. ( Base ` G ) ) -> ( F ` ( x ( +g ` G ) A ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) |
| 24 | 14 19 15 23 | syl3anc | |- ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> ( F ` ( x ( +g ` G ) A ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) |
| 25 | 13 22 24 | 3eqtr3d | |- ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> ( ( F ` A ) ( +g ` H ) ( F ` x ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) |
| 26 | 25 | ralrimiva | |- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> A. x e. S ( ( F ` A ) ( +g ` H ) ( F ` x ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) |
| 27 | 5 | adantr | |- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
| 28 | 27 | ffnd | |- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> F Fn ( Base ` G ) ) |
| 29 | oveq2 | |- ( y = ( F ` x ) -> ( ( F ` A ) ( +g ` H ) y ) = ( ( F ` A ) ( +g ` H ) ( F ` x ) ) ) |
|
| 30 | oveq1 | |- ( y = ( F ` x ) -> ( y ( +g ` H ) ( F ` A ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) |
|
| 31 | 29 30 | eqeq12d | |- ( y = ( F ` x ) -> ( ( ( F ` A ) ( +g ` H ) y ) = ( y ( +g ` H ) ( F ` A ) ) <-> ( ( F ` A ) ( +g ` H ) ( F ` x ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) ) |
| 32 | 31 | ralima | |- ( ( F Fn ( Base ` G ) /\ S C_ ( Base ` G ) ) -> ( A. y e. ( F " S ) ( ( F ` A ) ( +g ` H ) y ) = ( y ( +g ` H ) ( F ` A ) ) <-> A. x e. S ( ( F ` A ) ( +g ` H ) ( F ` x ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) ) |
| 33 | 28 18 32 | syl2anc | |- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( A. y e. ( F " S ) ( ( F ` A ) ( +g ` H ) y ) = ( y ( +g ` H ) ( F ` A ) ) <-> A. x e. S ( ( F ` A ) ( +g ` H ) ( F ` x ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) ) |
| 34 | 26 33 | mpbird | |- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> A. y e. ( F " S ) ( ( F ` A ) ( +g ` H ) y ) = ( y ( +g ` H ) ( F ` A ) ) ) |
| 35 | imassrn | |- ( F " S ) C_ ran F |
|
| 36 | 27 | frnd | |- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ran F C_ ( Base ` H ) ) |
| 37 | 35 36 | sstrid | |- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( F " S ) C_ ( Base ` H ) ) |
| 38 | 4 20 2 | elcntz | |- ( ( F " S ) C_ ( Base ` H ) -> ( ( F ` A ) e. ( Y ` ( F " S ) ) <-> ( ( F ` A ) e. ( Base ` H ) /\ A. y e. ( F " S ) ( ( F ` A ) ( +g ` H ) y ) = ( y ( +g ` H ) ( F ` A ) ) ) ) ) |
| 39 | 37 38 | syl | |- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( ( F ` A ) e. ( Y ` ( F " S ) ) <-> ( ( F ` A ) e. ( Base ` H ) /\ A. y e. ( F " S ) ( ( F ` A ) ( +g ` H ) y ) = ( y ( +g ` H ) ( F ` A ) ) ) ) ) |
| 40 | 9 34 39 | mpbir2and | |- ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( F ` A ) e. ( Y ` ( F " S ) ) ) |