This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzmhm.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| cntzmhm.y | ⊢ 𝑌 = ( Cntz ‘ 𝐻 ) | ||
| Assertion | cntzmhm | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzmhm.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 2 | cntzmhm.y | ⊢ 𝑌 = ( Cntz ‘ 𝐻 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 5 | 3 4 | mhmf | ⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
| 6 | 3 1 | cntzssv | ⊢ ( 𝑍 ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) |
| 7 | 6 | sseli | ⊢ ( 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
| 8 | ffvelcdm | ⊢ ( ( 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ∧ 𝐴 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( Base ‘ 𝐻 ) ) | |
| 9 | 5 7 8 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( Base ‘ 𝐻 ) ) |
| 10 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 11 | 10 1 | cntzi | ⊢ ( ( 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝐴 ) ) |
| 12 | 11 | adantll | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝐴 ) ) |
| 13 | 12 | fveq2d | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐹 ‘ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝐴 ) ) ) |
| 14 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ) | |
| 15 | 7 | ad2antlr | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
| 16 | 3 1 | cntzrcl | ⊢ ( 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝐺 ∈ V ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐺 ∈ V ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) ) |
| 18 | 17 | simprd | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 19 | 18 | sselda | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 20 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 21 | 3 10 20 | mhmlin | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 22 | 14 15 19 21 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐹 ‘ ( 𝐴 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 23 | 3 10 20 | mhmlin | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝐴 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝐴 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) |
| 24 | 14 19 15 23 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝐴 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) |
| 25 | 13 22 24 | 3eqtr3d | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) |
| 26 | 25 | ralrimiva | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑥 ∈ 𝑆 ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) |
| 27 | 5 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
| 28 | 27 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → 𝐹 Fn ( Base ‘ 𝐺 ) ) |
| 29 | oveq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 ) = ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) | |
| 30 | oveq1 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) | |
| 31 | 29 30 | eqeq12d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ↔ ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 32 | 31 | ralima | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝐺 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑆 ) ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝑆 ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 33 | 28 18 32 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑆 ) ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝑆 ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 34 | 26 33 | mpbird | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑦 ∈ ( 𝐹 “ 𝑆 ) ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) |
| 35 | imassrn | ⊢ ( 𝐹 “ 𝑆 ) ⊆ ran 𝐹 | |
| 36 | 27 | frnd | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ran 𝐹 ⊆ ( Base ‘ 𝐻 ) ) |
| 37 | 35 36 | sstrid | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐹 “ 𝑆 ) ⊆ ( Base ‘ 𝐻 ) ) |
| 38 | 4 20 2 | elcntz | ⊢ ( ( 𝐹 “ 𝑆 ) ⊆ ( Base ‘ 𝐻 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑆 ) ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑦 ∈ ( 𝐹 “ 𝑆 ) ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) ) ) |
| 39 | 37 38 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑆 ) ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑦 ∈ ( 𝐹 “ 𝑆 ) ( ( 𝐹 ‘ 𝐴 ) ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝐴 ) ) ) ) ) |
| 40 | 9 34 39 | mpbir2and | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝐴 ∈ ( 𝑍 ‘ 𝑆 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝑌 ‘ ( 𝐹 “ 𝑆 ) ) ) |