This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for elements of the centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzrcl.b | |- B = ( Base ` M ) |
|
| cntzrcl.z | |- Z = ( Cntz ` M ) |
||
| Assertion | cntzrcl | |- ( X e. ( Z ` S ) -> ( M e. _V /\ S C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzrcl.b | |- B = ( Base ` M ) |
|
| 2 | cntzrcl.z | |- Z = ( Cntz ` M ) |
|
| 3 | noel | |- -. X e. (/) |
|
| 4 | fvprc | |- ( -. M e. _V -> ( Cntz ` M ) = (/) ) |
|
| 5 | 2 4 | eqtrid | |- ( -. M e. _V -> Z = (/) ) |
| 6 | 5 | fveq1d | |- ( -. M e. _V -> ( Z ` S ) = ( (/) ` S ) ) |
| 7 | 0fv | |- ( (/) ` S ) = (/) |
|
| 8 | 6 7 | eqtrdi | |- ( -. M e. _V -> ( Z ` S ) = (/) ) |
| 9 | 8 | eleq2d | |- ( -. M e. _V -> ( X e. ( Z ` S ) <-> X e. (/) ) ) |
| 10 | 3 9 | mtbiri | |- ( -. M e. _V -> -. X e. ( Z ` S ) ) |
| 11 | 10 | con4i | |- ( X e. ( Z ` S ) -> M e. _V ) |
| 12 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 13 | 1 12 2 | cntzfval | |- ( M e. _V -> Z = ( x e. ~P B |-> { y e. B | A. z e. x ( y ( +g ` M ) z ) = ( z ( +g ` M ) y ) } ) ) |
| 14 | 11 13 | syl | |- ( X e. ( Z ` S ) -> Z = ( x e. ~P B |-> { y e. B | A. z e. x ( y ( +g ` M ) z ) = ( z ( +g ` M ) y ) } ) ) |
| 15 | 14 | dmeqd | |- ( X e. ( Z ` S ) -> dom Z = dom ( x e. ~P B |-> { y e. B | A. z e. x ( y ( +g ` M ) z ) = ( z ( +g ` M ) y ) } ) ) |
| 16 | eqid | |- ( x e. ~P B |-> { y e. B | A. z e. x ( y ( +g ` M ) z ) = ( z ( +g ` M ) y ) } ) = ( x e. ~P B |-> { y e. B | A. z e. x ( y ( +g ` M ) z ) = ( z ( +g ` M ) y ) } ) |
|
| 17 | 16 | dmmptss | |- dom ( x e. ~P B |-> { y e. B | A. z e. x ( y ( +g ` M ) z ) = ( z ( +g ` M ) y ) } ) C_ ~P B |
| 18 | 15 17 | eqsstrdi | |- ( X e. ( Z ` S ) -> dom Z C_ ~P B ) |
| 19 | elfvdm | |- ( X e. ( Z ` S ) -> S e. dom Z ) |
|
| 20 | 18 19 | sseldd | |- ( X e. ( Z ` S ) -> S e. ~P B ) |
| 21 | 20 | elpwid | |- ( X e. ( Z ` S ) -> S C_ B ) |
| 22 | 11 21 | jca | |- ( X e. ( Z ` S ) -> ( M e. _V /\ S C_ B ) ) |