This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the centralizer. (Contributed by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzfval.b | |- B = ( Base ` M ) |
|
| cntzfval.p | |- .+ = ( +g ` M ) |
||
| cntzfval.z | |- Z = ( Cntz ` M ) |
||
| Assertion | elcntz | |- ( S C_ B -> ( A e. ( Z ` S ) <-> ( A e. B /\ A. y e. S ( A .+ y ) = ( y .+ A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzfval.b | |- B = ( Base ` M ) |
|
| 2 | cntzfval.p | |- .+ = ( +g ` M ) |
|
| 3 | cntzfval.z | |- Z = ( Cntz ` M ) |
|
| 4 | 1 2 3 | cntzval | |- ( S C_ B -> ( Z ` S ) = { x e. B | A. y e. S ( x .+ y ) = ( y .+ x ) } ) |
| 5 | 4 | eleq2d | |- ( S C_ B -> ( A e. ( Z ` S ) <-> A e. { x e. B | A. y e. S ( x .+ y ) = ( y .+ x ) } ) ) |
| 6 | oveq1 | |- ( x = A -> ( x .+ y ) = ( A .+ y ) ) |
|
| 7 | oveq2 | |- ( x = A -> ( y .+ x ) = ( y .+ A ) ) |
|
| 8 | 6 7 | eqeq12d | |- ( x = A -> ( ( x .+ y ) = ( y .+ x ) <-> ( A .+ y ) = ( y .+ A ) ) ) |
| 9 | 8 | ralbidv | |- ( x = A -> ( A. y e. S ( x .+ y ) = ( y .+ x ) <-> A. y e. S ( A .+ y ) = ( y .+ A ) ) ) |
| 10 | 9 | elrab | |- ( A e. { x e. B | A. y e. S ( x .+ y ) = ( y .+ x ) } <-> ( A e. B /\ A. y e. S ( A .+ y ) = ( y .+ A ) ) ) |
| 11 | 5 10 | bitrdi | |- ( S C_ B -> ( A e. ( Z ` S ) <-> ( A e. B /\ A. y e. S ( A .+ y ) = ( y .+ A ) ) ) ) |