This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzrcl.b | |- B = ( Base ` M ) |
|
| cntzrcl.z | |- Z = ( Cntz ` M ) |
||
| Assertion | cntzssv | |- ( Z ` S ) C_ B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzrcl.b | |- B = ( Base ` M ) |
|
| 2 | cntzrcl.z | |- Z = ( Cntz ` M ) |
|
| 3 | 0ss | |- (/) C_ B |
|
| 4 | sseq1 | |- ( ( Z ` S ) = (/) -> ( ( Z ` S ) C_ B <-> (/) C_ B ) ) |
|
| 5 | 3 4 | mpbiri | |- ( ( Z ` S ) = (/) -> ( Z ` S ) C_ B ) |
| 6 | n0 | |- ( ( Z ` S ) =/= (/) <-> E. x x e. ( Z ` S ) ) |
|
| 7 | 1 2 | cntzrcl | |- ( x e. ( Z ` S ) -> ( M e. _V /\ S C_ B ) ) |
| 8 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 9 | 1 8 2 | cntzval | |- ( S C_ B -> ( Z ` S ) = { x e. B | A. y e. S ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) } ) |
| 10 | 7 9 | simpl2im | |- ( x e. ( Z ` S ) -> ( Z ` S ) = { x e. B | A. y e. S ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) } ) |
| 11 | ssrab2 | |- { x e. B | A. y e. S ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) } C_ B |
|
| 12 | 10 11 | eqsstrdi | |- ( x e. ( Z ` S ) -> ( Z ` S ) C_ B ) |
| 13 | 12 | exlimiv | |- ( E. x x e. ( Z ` S ) -> ( Z ` S ) C_ B ) |
| 14 | 6 13 | sylbi | |- ( ( Z ` S ) =/= (/) -> ( Z ` S ) C_ B ) |
| 15 | 5 14 | pm2.61ine | |- ( Z ` S ) C_ B |