This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The continuous extension of a given function F . (Contributed by Thierry Arnoux, 1-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnextfval.1 | |- X = U. J |
|
| cnextfval.2 | |- B = U. K |
||
| Assertion | cnextfval | |- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) -> ( ( J CnExt K ) ` F ) = U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnextfval.1 | |- X = U. J |
|
| 2 | cnextfval.2 | |- B = U. K |
|
| 3 | cnextval | |- ( ( J e. Top /\ K e. Top ) -> ( J CnExt K ) = ( f e. ( U. K ^pm U. J ) |-> U_ x e. ( ( cls ` J ) ` dom f ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) ) ) ) |
|
| 4 | 3 | adantr | |- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) -> ( J CnExt K ) = ( f e. ( U. K ^pm U. J ) |-> U_ x e. ( ( cls ` J ) ` dom f ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) ) ) ) |
| 5 | simpr | |- ( ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) /\ f = F ) -> f = F ) |
|
| 6 | 5 | dmeqd | |- ( ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) /\ f = F ) -> dom f = dom F ) |
| 7 | simplrl | |- ( ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) /\ f = F ) -> F : A --> B ) |
|
| 8 | 7 | fdmd | |- ( ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) /\ f = F ) -> dom F = A ) |
| 9 | 6 8 | eqtrd | |- ( ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) /\ f = F ) -> dom f = A ) |
| 10 | 9 | fveq2d | |- ( ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) /\ f = F ) -> ( ( cls ` J ) ` dom f ) = ( ( cls ` J ) ` A ) ) |
| 11 | 9 | oveq2d | |- ( ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) /\ f = F ) -> ( ( ( nei ` J ) ` { x } ) |`t dom f ) = ( ( ( nei ` J ) ` { x } ) |`t A ) ) |
| 12 | 11 | oveq2d | |- ( ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) /\ f = F ) -> ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) = ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ) |
| 13 | 12 5 | fveq12d | |- ( ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) /\ f = F ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) = ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) |
| 14 | 13 | xpeq2d | |- ( ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) /\ f = F ) -> ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) ) = ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 15 | 10 14 | iuneq12d | |- ( ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) /\ f = F ) -> U_ x e. ( ( cls ` J ) ` dom f ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t dom f ) ) ` f ) ) = U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 16 | uniexg | |- ( K e. Top -> U. K e. _V ) |
|
| 17 | 16 | ad2antlr | |- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) -> U. K e. _V ) |
| 18 | uniexg | |- ( J e. Top -> U. J e. _V ) |
|
| 19 | 18 | ad2antrr | |- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) -> U. J e. _V ) |
| 20 | eqid | |- A = A |
|
| 21 | 20 2 | feq23i | |- ( F : A --> B <-> F : A --> U. K ) |
| 22 | 21 | biimpi | |- ( F : A --> B -> F : A --> U. K ) |
| 23 | 22 | ad2antrl | |- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) -> F : A --> U. K ) |
| 24 | 1 | sseq2i | |- ( A C_ X <-> A C_ U. J ) |
| 25 | 24 | biimpi | |- ( A C_ X -> A C_ U. J ) |
| 26 | 25 | ad2antll | |- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) -> A C_ U. J ) |
| 27 | elpm2r | |- ( ( ( U. K e. _V /\ U. J e. _V ) /\ ( F : A --> U. K /\ A C_ U. J ) ) -> F e. ( U. K ^pm U. J ) ) |
|
| 28 | 17 19 23 26 27 | syl22anc | |- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) -> F e. ( U. K ^pm U. J ) ) |
| 29 | fvex | |- ( ( cls ` J ) ` A ) e. _V |
|
| 30 | vsnex | |- { x } e. _V |
|
| 31 | fvex | |- ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) e. _V |
|
| 32 | 30 31 | xpex | |- ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) e. _V |
| 33 | 29 32 | iunex | |- U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) e. _V |
| 34 | 33 | a1i | |- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) -> U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) e. _V ) |
| 35 | 4 15 28 34 | fvmptd | |- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ X ) ) -> ( ( J CnExt K ) ` F ) = U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |