This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The other direction of the bicondition in cncongr . (Contributed by AV, 11-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncongr2 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( A mod M ) = ( B mod M ) -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 2 | 1 | mul01d | |- ( A e. ZZ -> ( A x. 0 ) = 0 ) |
| 3 | 2 | 3ad2ant1 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A x. 0 ) = 0 ) |
| 4 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
| 5 | 4 | mul01d | |- ( B e. ZZ -> ( B x. 0 ) = 0 ) |
| 6 | 5 | 3ad2ant2 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( B x. 0 ) = 0 ) |
| 7 | 3 6 | eqtr4d | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A x. 0 ) = ( B x. 0 ) ) |
| 8 | 7 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( A x. 0 ) = ( B x. 0 ) ) |
| 9 | 8 | oveq1d | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( A x. 0 ) mod N ) = ( ( B x. 0 ) mod N ) ) |
| 10 | 9 | adantr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ ( A mod M ) = ( B mod M ) ) -> ( ( A x. 0 ) mod N ) = ( ( B x. 0 ) mod N ) ) |
| 11 | oveq2 | |- ( C = 0 -> ( A x. C ) = ( A x. 0 ) ) |
|
| 12 | 11 | oveq1d | |- ( C = 0 -> ( ( A x. C ) mod N ) = ( ( A x. 0 ) mod N ) ) |
| 13 | oveq2 | |- ( C = 0 -> ( B x. C ) = ( B x. 0 ) ) |
|
| 14 | 13 | oveq1d | |- ( C = 0 -> ( ( B x. C ) mod N ) = ( ( B x. 0 ) mod N ) ) |
| 15 | 12 14 | eqeq12d | |- ( C = 0 -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> ( ( A x. 0 ) mod N ) = ( ( B x. 0 ) mod N ) ) ) |
| 16 | 10 15 | imbitrrid | |- ( C = 0 -> ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ ( A mod M ) = ( B mod M ) ) -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) ) |
| 17 | oveq2 | |- ( M = ( N / ( C gcd N ) ) -> ( A mod M ) = ( A mod ( N / ( C gcd N ) ) ) ) |
|
| 18 | oveq2 | |- ( M = ( N / ( C gcd N ) ) -> ( B mod M ) = ( B mod ( N / ( C gcd N ) ) ) ) |
|
| 19 | 17 18 | eqeq12d | |- ( M = ( N / ( C gcd N ) ) -> ( ( A mod M ) = ( B mod M ) <-> ( A mod ( N / ( C gcd N ) ) ) = ( B mod ( N / ( C gcd N ) ) ) ) ) |
| 20 | 19 | adantl | |- ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> ( ( A mod M ) = ( B mod M ) <-> ( A mod ( N / ( C gcd N ) ) ) = ( B mod ( N / ( C gcd N ) ) ) ) ) |
| 21 | 20 | adantl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( A mod M ) = ( B mod M ) <-> ( A mod ( N / ( C gcd N ) ) ) = ( B mod ( N / ( C gcd N ) ) ) ) ) |
| 22 | simpl | |- ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> N e. NN ) |
|
| 23 | simp3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> C e. ZZ ) |
|
| 24 | divgcdnnr | |- ( ( N e. NN /\ C e. ZZ ) -> ( N / ( C gcd N ) ) e. NN ) |
|
| 25 | 22 23 24 | syl2anr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( N / ( C gcd N ) ) e. NN ) |
| 26 | simpl1 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> A e. ZZ ) |
|
| 27 | simpl2 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> B e. ZZ ) |
|
| 28 | moddvds | |- ( ( ( N / ( C gcd N ) ) e. NN /\ A e. ZZ /\ B e. ZZ ) -> ( ( A mod ( N / ( C gcd N ) ) ) = ( B mod ( N / ( C gcd N ) ) ) <-> ( N / ( C gcd N ) ) || ( A - B ) ) ) |
|
| 29 | 25 26 27 28 | syl3anc | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( A mod ( N / ( C gcd N ) ) ) = ( B mod ( N / ( C gcd N ) ) ) <-> ( N / ( C gcd N ) ) || ( A - B ) ) ) |
| 30 | 25 | nnzd | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( N / ( C gcd N ) ) e. ZZ ) |
| 31 | zsubcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ ) |
|
| 32 | 31 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A - B ) e. ZZ ) |
| 33 | 32 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( A - B ) e. ZZ ) |
| 34 | 30 33 | jca | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( N / ( C gcd N ) ) e. ZZ /\ ( A - B ) e. ZZ ) ) |
| 35 | divides | |- ( ( ( N / ( C gcd N ) ) e. ZZ /\ ( A - B ) e. ZZ ) -> ( ( N / ( C gcd N ) ) || ( A - B ) <-> E. k e. ZZ ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) ) ) |
|
| 36 | 34 35 | syl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( N / ( C gcd N ) ) || ( A - B ) <-> E. k e. ZZ ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) ) ) |
| 37 | 21 29 36 | 3bitrd | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( A mod M ) = ( B mod M ) <-> E. k e. ZZ ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) ) ) |
| 38 | simpr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> k e. ZZ ) |
|
| 39 | 30 | adantr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) -> ( N / ( C gcd N ) ) e. ZZ ) |
| 40 | 39 | adantr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( N / ( C gcd N ) ) e. ZZ ) |
| 41 | 38 40 | zmulcld | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( k x. ( N / ( C gcd N ) ) ) e. ZZ ) |
| 42 | 41 | zcnd | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( k x. ( N / ( C gcd N ) ) ) e. CC ) |
| 43 | 31 | zcnd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. CC ) |
| 44 | 43 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A - B ) e. CC ) |
| 45 | 44 | ad3antrrr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( A - B ) e. CC ) |
| 46 | 23 | zcnd | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> C e. CC ) |
| 47 | 46 | ad3antrrr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> C e. CC ) |
| 48 | simpr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) -> C =/= 0 ) |
|
| 49 | 48 | adantr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> C =/= 0 ) |
| 50 | 42 45 47 49 | mulcan2d | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( ( ( k x. ( N / ( C gcd N ) ) ) x. C ) = ( ( A - B ) x. C ) <-> ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) ) ) |
| 51 | zcn | |- ( C e. ZZ -> C e. CC ) |
|
| 52 | subdir | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) x. C ) = ( ( A x. C ) - ( B x. C ) ) ) |
|
| 53 | 1 4 51 52 | syl3an | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A - B ) x. C ) = ( ( A x. C ) - ( B x. C ) ) ) |
| 54 | 53 | ad3antrrr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( ( A - B ) x. C ) = ( ( A x. C ) - ( B x. C ) ) ) |
| 55 | 54 | eqeq2d | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( ( ( k x. ( N / ( C gcd N ) ) ) x. C ) = ( ( A - B ) x. C ) <-> ( ( k x. ( N / ( C gcd N ) ) ) x. C ) = ( ( A x. C ) - ( B x. C ) ) ) ) |
| 56 | 50 55 | bitr3d | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) <-> ( ( k x. ( N / ( C gcd N ) ) ) x. C ) = ( ( A x. C ) - ( B x. C ) ) ) ) |
| 57 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 58 | 57 | adantr | |- ( ( N e. NN /\ k e. ZZ ) -> N e. ZZ ) |
| 59 | simpr | |- ( ( N e. NN /\ k e. ZZ ) -> k e. ZZ ) |
|
| 60 | 59 | zcnd | |- ( ( N e. NN /\ k e. ZZ ) -> k e. CC ) |
| 61 | 60 | adantl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> k e. CC ) |
| 62 | 46 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> C e. CC ) |
| 63 | simpl | |- ( ( N e. NN /\ k e. ZZ ) -> N e. NN ) |
|
| 64 | 63 | nnzd | |- ( ( N e. NN /\ k e. ZZ ) -> N e. ZZ ) |
| 65 | 23 64 | anim12i | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( C e. ZZ /\ N e. ZZ ) ) |
| 66 | gcdcl | |- ( ( C e. ZZ /\ N e. ZZ ) -> ( C gcd N ) e. NN0 ) |
|
| 67 | 65 66 | syl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( C gcd N ) e. NN0 ) |
| 68 | 67 | nn0cnd | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( C gcd N ) e. CC ) |
| 69 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 70 | 69 | neneqd | |- ( N e. NN -> -. N = 0 ) |
| 71 | 70 | adantr | |- ( ( N e. NN /\ k e. ZZ ) -> -. N = 0 ) |
| 72 | 71 | adantl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> -. N = 0 ) |
| 73 | 72 | intnand | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> -. ( C = 0 /\ N = 0 ) ) |
| 74 | gcdeq0 | |- ( ( C e. ZZ /\ N e. ZZ ) -> ( ( C gcd N ) = 0 <-> ( C = 0 /\ N = 0 ) ) ) |
|
| 75 | 65 74 | syl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( ( C gcd N ) = 0 <-> ( C = 0 /\ N = 0 ) ) ) |
| 76 | 75 | necon3abid | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( ( C gcd N ) =/= 0 <-> -. ( C = 0 /\ N = 0 ) ) ) |
| 77 | 73 76 | mpbird | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( C gcd N ) =/= 0 ) |
| 78 | 61 62 68 77 | divassd | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( ( k x. C ) / ( C gcd N ) ) = ( k x. ( C / ( C gcd N ) ) ) ) |
| 79 | 59 | adantl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> k e. ZZ ) |
| 80 | 57 69 | jca | |- ( N e. NN -> ( N e. ZZ /\ N =/= 0 ) ) |
| 81 | 80 | adantr | |- ( ( N e. NN /\ k e. ZZ ) -> ( N e. ZZ /\ N =/= 0 ) ) |
| 82 | 23 81 | anim12i | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( C e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) ) ) |
| 83 | 3anass | |- ( ( C e. ZZ /\ N e. ZZ /\ N =/= 0 ) <-> ( C e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) ) ) |
|
| 84 | 82 83 | sylibr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( C e. ZZ /\ N e. ZZ /\ N =/= 0 ) ) |
| 85 | divgcdz | |- ( ( C e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( C / ( C gcd N ) ) e. ZZ ) |
|
| 86 | 84 85 | syl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( C / ( C gcd N ) ) e. ZZ ) |
| 87 | 79 86 | zmulcld | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( k x. ( C / ( C gcd N ) ) ) e. ZZ ) |
| 88 | 78 87 | eqeltrd | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( ( k x. C ) / ( C gcd N ) ) e. ZZ ) |
| 89 | dvdsmul1 | |- ( ( N e. ZZ /\ ( ( k x. C ) / ( C gcd N ) ) e. ZZ ) -> N || ( N x. ( ( k x. C ) / ( C gcd N ) ) ) ) |
|
| 90 | 58 88 89 | syl2an2 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> N || ( N x. ( ( k x. C ) / ( C gcd N ) ) ) ) |
| 91 | 63 | nncnd | |- ( ( N e. NN /\ k e. ZZ ) -> N e. CC ) |
| 92 | 91 | adantl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> N e. CC ) |
| 93 | divmulasscom | |- ( ( ( k e. CC /\ N e. CC /\ C e. CC ) /\ ( ( C gcd N ) e. CC /\ ( C gcd N ) =/= 0 ) ) -> ( ( k x. ( N / ( C gcd N ) ) ) x. C ) = ( N x. ( ( k x. C ) / ( C gcd N ) ) ) ) |
|
| 94 | 61 92 62 68 77 93 | syl32anc | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> ( ( k x. ( N / ( C gcd N ) ) ) x. C ) = ( N x. ( ( k x. C ) / ( C gcd N ) ) ) ) |
| 95 | 90 94 | breqtrrd | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ k e. ZZ ) ) -> N || ( ( k x. ( N / ( C gcd N ) ) ) x. C ) ) |
| 96 | 95 | exp32 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( N e. NN -> ( k e. ZZ -> N || ( ( k x. ( N / ( C gcd N ) ) ) x. C ) ) ) ) |
| 97 | 96 | adantrd | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> ( k e. ZZ -> N || ( ( k x. ( N / ( C gcd N ) ) ) x. C ) ) ) ) |
| 98 | 97 | imp | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( k e. ZZ -> N || ( ( k x. ( N / ( C gcd N ) ) ) x. C ) ) ) |
| 99 | 98 | adantr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) -> ( k e. ZZ -> N || ( ( k x. ( N / ( C gcd N ) ) ) x. C ) ) ) |
| 100 | 99 | imp | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> N || ( ( k x. ( N / ( C gcd N ) ) ) x. C ) ) |
| 101 | breq2 | |- ( ( ( k x. ( N / ( C gcd N ) ) ) x. C ) = ( ( A x. C ) - ( B x. C ) ) -> ( N || ( ( k x. ( N / ( C gcd N ) ) ) x. C ) <-> N || ( ( A x. C ) - ( B x. C ) ) ) ) |
|
| 102 | 100 101 | syl5ibcom | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( ( ( k x. ( N / ( C gcd N ) ) ) x. C ) = ( ( A x. C ) - ( B x. C ) ) -> N || ( ( A x. C ) - ( B x. C ) ) ) ) |
| 103 | 56 102 | sylbid | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) /\ k e. ZZ ) -> ( ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) -> N || ( ( A x. C ) - ( B x. C ) ) ) ) |
| 104 | 103 | rexlimdva | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) -> ( E. k e. ZZ ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) -> N || ( ( A x. C ) - ( B x. C ) ) ) ) |
| 105 | 22 | adantl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> N e. NN ) |
| 106 | zmulcl | |- ( ( A e. ZZ /\ C e. ZZ ) -> ( A x. C ) e. ZZ ) |
|
| 107 | 106 | 3adant2 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A x. C ) e. ZZ ) |
| 108 | 107 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( A x. C ) e. ZZ ) |
| 109 | zmulcl | |- ( ( B e. ZZ /\ C e. ZZ ) -> ( B x. C ) e. ZZ ) |
|
| 110 | 109 | 3adant1 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( B x. C ) e. ZZ ) |
| 111 | 110 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( B x. C ) e. ZZ ) |
| 112 | moddvds | |- ( ( N e. NN /\ ( A x. C ) e. ZZ /\ ( B x. C ) e. ZZ ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> N || ( ( A x. C ) - ( B x. C ) ) ) ) |
|
| 113 | 105 108 111 112 | syl3anc | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> N || ( ( A x. C ) - ( B x. C ) ) ) ) |
| 114 | 113 | adantr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> N || ( ( A x. C ) - ( B x. C ) ) ) ) |
| 115 | 104 114 | sylibrd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ C =/= 0 ) -> ( E. k e. ZZ ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) ) |
| 116 | 115 | ex | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( C =/= 0 -> ( E. k e. ZZ ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) ) ) |
| 117 | 116 | com23 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( E. k e. ZZ ( k x. ( N / ( C gcd N ) ) ) = ( A - B ) -> ( C =/= 0 -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) ) ) |
| 118 | 37 117 | sylbid | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( A mod M ) = ( B mod M ) -> ( C =/= 0 -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) ) ) |
| 119 | 118 | imp | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ ( A mod M ) = ( B mod M ) ) -> ( C =/= 0 -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) ) |
| 120 | 119 | com12 | |- ( C =/= 0 -> ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ ( A mod M ) = ( B mod M ) ) -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) ) |
| 121 | 16 120 | pm2.61ine | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ ( A mod M ) = ( B mod M ) ) -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) |
| 122 | 121 | ex | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( A mod M ) = ( B mod M ) -> ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) ) ) |