This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An associative/commutative law for division and multiplication. (Contributed by AV, 10-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divmulasscom | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( A x. ( B / D ) ) x. C ) = ( B x. ( ( A x. C ) / D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divmulass | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( A x. ( B / D ) ) x. C ) = ( ( A x. B ) x. ( C / D ) ) ) |
|
| 2 | mulcom | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
|
| 3 | 2 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. B ) = ( B x. A ) ) |
| 4 | 3 | adantr | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( A x. B ) = ( B x. A ) ) |
| 5 | 4 | oveq1d | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( A x. B ) x. ( C / D ) ) = ( ( B x. A ) x. ( C / D ) ) ) |
| 6 | simpl2 | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> B e. CC ) |
|
| 7 | simpl1 | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> A e. CC ) |
|
| 8 | simp3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> C e. CC ) |
|
| 9 | 8 | anim1i | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( C e. CC /\ ( D e. CC /\ D =/= 0 ) ) ) |
| 10 | 3anass | |- ( ( C e. CC /\ D e. CC /\ D =/= 0 ) <-> ( C e. CC /\ ( D e. CC /\ D =/= 0 ) ) ) |
|
| 11 | 9 10 | sylibr | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( C e. CC /\ D e. CC /\ D =/= 0 ) ) |
| 12 | divcl | |- ( ( C e. CC /\ D e. CC /\ D =/= 0 ) -> ( C / D ) e. CC ) |
|
| 13 | 11 12 | syl | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( C / D ) e. CC ) |
| 14 | 6 7 13 | mulassd | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( B x. A ) x. ( C / D ) ) = ( B x. ( A x. ( C / D ) ) ) ) |
| 15 | 8 | adantr | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> C e. CC ) |
| 16 | simpr | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( D e. CC /\ D =/= 0 ) ) |
|
| 17 | divass | |- ( ( A e. CC /\ C e. CC /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( A x. C ) / D ) = ( A x. ( C / D ) ) ) |
|
| 18 | 7 15 16 17 | syl3anc | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( A x. C ) / D ) = ( A x. ( C / D ) ) ) |
| 19 | 18 | eqcomd | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( A x. ( C / D ) ) = ( ( A x. C ) / D ) ) |
| 20 | 19 | oveq2d | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( B x. ( A x. ( C / D ) ) ) = ( B x. ( ( A x. C ) / D ) ) ) |
| 21 | 14 20 | eqtrd | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( B x. A ) x. ( C / D ) ) = ( B x. ( ( A x. C ) / D ) ) ) |
| 22 | 1 5 21 | 3eqtrd | |- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( A x. ( B / D ) ) x. C ) = ( B x. ( ( A x. C ) / D ) ) ) |