This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One direction of the bicondition in cncongr . Theorem 5.4 in ApostolNT p. 109. (Contributed by AV, 13-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncongr1 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) -> ( A mod M ) = ( B mod M ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zmulcl | |- ( ( A e. ZZ /\ C e. ZZ ) -> ( A x. C ) e. ZZ ) |
|
| 2 | 1 | 3adant2 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A x. C ) e. ZZ ) |
| 3 | zmulcl | |- ( ( B e. ZZ /\ C e. ZZ ) -> ( B x. C ) e. ZZ ) |
|
| 4 | 3 | 3adant1 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( B x. C ) e. ZZ ) |
| 5 | simpl | |- ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> N e. NN ) |
|
| 6 | congr | |- ( ( ( A x. C ) e. ZZ /\ ( B x. C ) e. ZZ /\ N e. NN ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> E. k e. ZZ ( k x. N ) = ( ( A x. C ) - ( B x. C ) ) ) ) |
|
| 7 | 2 4 5 6 | syl2an3an | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) <-> E. k e. ZZ ( k x. N ) = ( ( A x. C ) - ( B x. C ) ) ) ) |
| 8 | simpl | |- ( ( C e. ZZ /\ N e. NN ) -> C e. ZZ ) |
|
| 9 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 10 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 11 | 9 10 | jca | |- ( N e. NN -> ( N e. ZZ /\ N =/= 0 ) ) |
| 12 | 11 | adantl | |- ( ( C e. ZZ /\ N e. NN ) -> ( N e. ZZ /\ N =/= 0 ) ) |
| 13 | eqidd | |- ( ( C e. ZZ /\ N e. NN ) -> ( C gcd N ) = ( C gcd N ) ) |
|
| 14 | 8 12 13 | 3jca | |- ( ( C e. ZZ /\ N e. NN ) -> ( C e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) /\ ( C gcd N ) = ( C gcd N ) ) ) |
| 15 | 14 | ex | |- ( C e. ZZ -> ( N e. NN -> ( C e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) /\ ( C gcd N ) = ( C gcd N ) ) ) ) |
| 16 | 15 | 3ad2ant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( N e. NN -> ( C e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) /\ ( C gcd N ) = ( C gcd N ) ) ) ) |
| 17 | 16 | com12 | |- ( N e. NN -> ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( C e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) /\ ( C gcd N ) = ( C gcd N ) ) ) ) |
| 18 | 17 | adantr | |- ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( C e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) /\ ( C gcd N ) = ( C gcd N ) ) ) ) |
| 19 | 18 | impcom | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( C e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) /\ ( C gcd N ) = ( C gcd N ) ) ) |
| 20 | divgcdcoprmex | |- ( ( C e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) /\ ( C gcd N ) = ( C gcd N ) ) -> E. r e. ZZ E. s e. ZZ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) |
|
| 21 | 19 20 | syl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> E. r e. ZZ E. s e. ZZ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) |
| 22 | 21 | adantr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> E. r e. ZZ E. s e. ZZ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) |
| 23 | oveq2 | |- ( N = ( ( C gcd N ) x. s ) -> ( k x. N ) = ( k x. ( ( C gcd N ) x. s ) ) ) |
|
| 24 | 23 | 3ad2ant2 | |- ( ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) -> ( k x. N ) = ( k x. ( ( C gcd N ) x. s ) ) ) |
| 25 | 24 | adantl | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( k x. N ) = ( k x. ( ( C gcd N ) x. s ) ) ) |
| 26 | oveq2 | |- ( C = ( ( C gcd N ) x. r ) -> ( A x. C ) = ( A x. ( ( C gcd N ) x. r ) ) ) |
|
| 27 | oveq2 | |- ( C = ( ( C gcd N ) x. r ) -> ( B x. C ) = ( B x. ( ( C gcd N ) x. r ) ) ) |
|
| 28 | 26 27 | oveq12d | |- ( C = ( ( C gcd N ) x. r ) -> ( ( A x. C ) - ( B x. C ) ) = ( ( A x. ( ( C gcd N ) x. r ) ) - ( B x. ( ( C gcd N ) x. r ) ) ) ) |
| 29 | 28 | 3ad2ant1 | |- ( ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) -> ( ( A x. C ) - ( B x. C ) ) = ( ( A x. ( ( C gcd N ) x. r ) ) - ( B x. ( ( C gcd N ) x. r ) ) ) ) |
| 30 | 29 | adantl | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( ( A x. C ) - ( B x. C ) ) = ( ( A x. ( ( C gcd N ) x. r ) ) - ( B x. ( ( C gcd N ) x. r ) ) ) ) |
| 31 | 25 30 | eqeq12d | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( ( k x. N ) = ( ( A x. C ) - ( B x. C ) ) <-> ( k x. ( ( C gcd N ) x. s ) ) = ( ( A x. ( ( C gcd N ) x. r ) ) - ( B x. ( ( C gcd N ) x. r ) ) ) ) ) |
| 32 | simpr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> k e. ZZ ) |
|
| 33 | 32 | zcnd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> k e. CC ) |
| 34 | 33 | adantr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> k e. CC ) |
| 35 | simp3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> C e. ZZ ) |
|
| 36 | 35 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> C e. ZZ ) |
| 37 | 9 | adantr | |- ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> N e. ZZ ) |
| 38 | 37 | adantl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> N e. ZZ ) |
| 39 | 36 38 | gcdcld | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( C gcd N ) e. NN0 ) |
| 40 | 39 | nn0cnd | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( C gcd N ) e. CC ) |
| 41 | 40 | ad2antrr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( C gcd N ) e. CC ) |
| 42 | simpr | |- ( ( r e. ZZ /\ s e. ZZ ) -> s e. ZZ ) |
|
| 43 | 42 | zcnd | |- ( ( r e. ZZ /\ s e. ZZ ) -> s e. CC ) |
| 44 | 43 | adantl | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> s e. CC ) |
| 45 | 34 41 44 | mul12d | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( k x. ( ( C gcd N ) x. s ) ) = ( ( C gcd N ) x. ( k x. s ) ) ) |
| 46 | simp1 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> A e. ZZ ) |
|
| 47 | 46 | zcnd | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> A e. CC ) |
| 48 | 47 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> A e. CC ) |
| 49 | 48 | ad2antrr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> A e. CC ) |
| 50 | 35 | ad2antrr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> C e. ZZ ) |
| 51 | 5 | nnzd | |- ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> N e. ZZ ) |
| 52 | 51 | adantl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> N e. ZZ ) |
| 53 | 52 | adantr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> N e. ZZ ) |
| 54 | 50 53 | gcdcld | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> ( C gcd N ) e. NN0 ) |
| 55 | 54 | nn0cnd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> ( C gcd N ) e. CC ) |
| 56 | 55 | adantr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( C gcd N ) e. CC ) |
| 57 | simpl | |- ( ( r e. ZZ /\ s e. ZZ ) -> r e. ZZ ) |
|
| 58 | 57 | zcnd | |- ( ( r e. ZZ /\ s e. ZZ ) -> r e. CC ) |
| 59 | 58 | adantl | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> r e. CC ) |
| 60 | 49 56 59 | mul12d | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( A x. ( ( C gcd N ) x. r ) ) = ( ( C gcd N ) x. ( A x. r ) ) ) |
| 61 | simp2 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> B e. ZZ ) |
|
| 62 | 61 | zcnd | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> B e. CC ) |
| 63 | 62 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> B e. CC ) |
| 64 | 63 | ad2antrr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> B e. CC ) |
| 65 | 36 52 | gcdcld | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( C gcd N ) e. NN0 ) |
| 66 | 65 | nn0cnd | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( C gcd N ) e. CC ) |
| 67 | 66 | ad2antrr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( C gcd N ) e. CC ) |
| 68 | 64 67 59 | mul12d | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( B x. ( ( C gcd N ) x. r ) ) = ( ( C gcd N ) x. ( B x. r ) ) ) |
| 69 | 60 68 | oveq12d | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( A x. ( ( C gcd N ) x. r ) ) - ( B x. ( ( C gcd N ) x. r ) ) ) = ( ( ( C gcd N ) x. ( A x. r ) ) - ( ( C gcd N ) x. ( B x. r ) ) ) ) |
| 70 | 45 69 | eqeq12d | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( k x. ( ( C gcd N ) x. s ) ) = ( ( A x. ( ( C gcd N ) x. r ) ) - ( B x. ( ( C gcd N ) x. r ) ) ) <-> ( ( C gcd N ) x. ( k x. s ) ) = ( ( ( C gcd N ) x. ( A x. r ) ) - ( ( C gcd N ) x. ( B x. r ) ) ) ) ) |
| 71 | 46 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> A e. ZZ ) |
| 72 | 71 | ad2antrr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> A e. ZZ ) |
| 73 | 57 | adantl | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> r e. ZZ ) |
| 74 | 72 73 | zmulcld | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( A x. r ) e. ZZ ) |
| 75 | 74 | zcnd | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( A x. r ) e. CC ) |
| 76 | 61 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> B e. ZZ ) |
| 77 | 76 | ad2antrr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> B e. ZZ ) |
| 78 | 77 73 | zmulcld | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( B x. r ) e. ZZ ) |
| 79 | 78 | zcnd | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( B x. r ) e. CC ) |
| 80 | 67 75 79 | subdid | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( C gcd N ) x. ( ( A x. r ) - ( B x. r ) ) ) = ( ( ( C gcd N ) x. ( A x. r ) ) - ( ( C gcd N ) x. ( B x. r ) ) ) ) |
| 81 | 80 | eqcomd | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( ( C gcd N ) x. ( A x. r ) ) - ( ( C gcd N ) x. ( B x. r ) ) ) = ( ( C gcd N ) x. ( ( A x. r ) - ( B x. r ) ) ) ) |
| 82 | 81 | eqeq2d | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( ( C gcd N ) x. ( k x. s ) ) = ( ( ( C gcd N ) x. ( A x. r ) ) - ( ( C gcd N ) x. ( B x. r ) ) ) <-> ( ( C gcd N ) x. ( k x. s ) ) = ( ( C gcd N ) x. ( ( A x. r ) - ( B x. r ) ) ) ) ) |
| 83 | 32 | adantr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> k e. ZZ ) |
| 84 | 42 | adantl | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> s e. ZZ ) |
| 85 | 83 84 | zmulcld | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( k x. s ) e. ZZ ) |
| 86 | 85 | zcnd | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( k x. s ) e. CC ) |
| 87 | simpl | |- ( ( A e. ZZ /\ B e. ZZ ) -> A e. ZZ ) |
|
| 88 | 87 57 | anim12i | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( A e. ZZ /\ r e. ZZ ) ) |
| 89 | zmulcl | |- ( ( A e. ZZ /\ r e. ZZ ) -> ( A x. r ) e. ZZ ) |
|
| 90 | 88 89 | syl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( A x. r ) e. ZZ ) |
| 91 | simpr | |- ( ( A e. ZZ /\ B e. ZZ ) -> B e. ZZ ) |
|
| 92 | 91 57 | anim12i | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( B e. ZZ /\ r e. ZZ ) ) |
| 93 | zmulcl | |- ( ( B e. ZZ /\ r e. ZZ ) -> ( B x. r ) e. ZZ ) |
|
| 94 | 92 93 | syl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( B x. r ) e. ZZ ) |
| 95 | 90 94 | zsubcld | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( A x. r ) - ( B x. r ) ) e. ZZ ) |
| 96 | 95 | zcnd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( A x. r ) - ( B x. r ) ) e. CC ) |
| 97 | 96 | ex | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( r e. ZZ /\ s e. ZZ ) -> ( ( A x. r ) - ( B x. r ) ) e. CC ) ) |
| 98 | 97 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( r e. ZZ /\ s e. ZZ ) -> ( ( A x. r ) - ( B x. r ) ) e. CC ) ) |
| 99 | 98 | ad2antrr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> ( ( r e. ZZ /\ s e. ZZ ) -> ( ( A x. r ) - ( B x. r ) ) e. CC ) ) |
| 100 | 99 | imp | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( A x. r ) - ( B x. r ) ) e. CC ) |
| 101 | 10 | adantr | |- ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> N =/= 0 ) |
| 102 | 101 | adantl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> N =/= 0 ) |
| 103 | gcd2n0cl | |- ( ( C e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( C gcd N ) e. NN ) |
|
| 104 | 36 52 102 103 | syl3anc | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( C gcd N ) e. NN ) |
| 105 | nnne0 | |- ( ( C gcd N ) e. NN -> ( C gcd N ) =/= 0 ) |
|
| 106 | 104 105 | syl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( C gcd N ) =/= 0 ) |
| 107 | 106 | ad2antrr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( C gcd N ) =/= 0 ) |
| 108 | 86 100 67 107 | mulcand | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( ( C gcd N ) x. ( k x. s ) ) = ( ( C gcd N ) x. ( ( A x. r ) - ( B x. r ) ) ) <-> ( k x. s ) = ( ( A x. r ) - ( B x. r ) ) ) ) |
| 109 | 70 82 108 | 3bitrd | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( k x. ( ( C gcd N ) x. s ) ) = ( ( A x. ( ( C gcd N ) x. r ) ) - ( B x. ( ( C gcd N ) x. r ) ) ) <-> ( k x. s ) = ( ( A x. r ) - ( B x. r ) ) ) ) |
| 110 | 109 | adantr | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( ( k x. ( ( C gcd N ) x. s ) ) = ( ( A x. ( ( C gcd N ) x. r ) ) - ( B x. ( ( C gcd N ) x. r ) ) ) <-> ( k x. s ) = ( ( A x. r ) - ( B x. r ) ) ) ) |
| 111 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 112 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
| 113 | 111 112 | anim12i | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A e. CC /\ B e. CC ) ) |
| 114 | 113 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A e. CC /\ B e. CC ) ) |
| 115 | 114 | ad2antrr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> ( A e. CC /\ B e. CC ) ) |
| 116 | 115 58 | anim12i | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( A e. CC /\ B e. CC ) /\ r e. CC ) ) |
| 117 | df-3an | |- ( ( A e. CC /\ B e. CC /\ r e. CC ) <-> ( ( A e. CC /\ B e. CC ) /\ r e. CC ) ) |
|
| 118 | 116 117 | sylibr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( A e. CC /\ B e. CC /\ r e. CC ) ) |
| 119 | subdir | |- ( ( A e. CC /\ B e. CC /\ r e. CC ) -> ( ( A - B ) x. r ) = ( ( A x. r ) - ( B x. r ) ) ) |
|
| 120 | 118 119 | syl | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( A - B ) x. r ) = ( ( A x. r ) - ( B x. r ) ) ) |
| 121 | 120 | eqcomd | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( A x. r ) - ( B x. r ) ) = ( ( A - B ) x. r ) ) |
| 122 | 121 | adantr | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( ( A x. r ) - ( B x. r ) ) = ( ( A - B ) x. r ) ) |
| 123 | 122 | eqeq2d | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( ( k x. s ) = ( ( A x. r ) - ( B x. r ) ) <-> ( k x. s ) = ( ( A - B ) x. r ) ) ) |
| 124 | 5 | nncnd | |- ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> N e. CC ) |
| 125 | 124 | adantl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> N e. CC ) |
| 126 | 125 | ad2antrr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> N e. CC ) |
| 127 | 84 | zcnd | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> s e. CC ) |
| 128 | 66 106 | jca | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( C gcd N ) e. CC /\ ( C gcd N ) =/= 0 ) ) |
| 129 | 128 | ad2antrr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( C gcd N ) e. CC /\ ( C gcd N ) =/= 0 ) ) |
| 130 | divmul2 | |- ( ( N e. CC /\ s e. CC /\ ( ( C gcd N ) e. CC /\ ( C gcd N ) =/= 0 ) ) -> ( ( N / ( C gcd N ) ) = s <-> N = ( ( C gcd N ) x. s ) ) ) |
|
| 131 | 126 127 129 130 | syl3anc | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( N / ( C gcd N ) ) = s <-> N = ( ( C gcd N ) x. s ) ) ) |
| 132 | simpll | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) ) |
|
| 133 | 73 | adantr | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> r e. ZZ ) |
| 134 | 5 | adantl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> N e. NN ) |
| 135 | 134 36 | jca | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( N e. NN /\ C e. ZZ ) ) |
| 136 | divgcdnnr | |- ( ( N e. NN /\ C e. ZZ ) -> ( N / ( C gcd N ) ) e. NN ) |
|
| 137 | 135 136 | syl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( N / ( C gcd N ) ) e. NN ) |
| 138 | 137 | adantr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> ( N / ( C gcd N ) ) e. NN ) |
| 139 | 138 | ad2antrr | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( N / ( C gcd N ) ) e. NN ) |
| 140 | eleq1 | |- ( s = ( N / ( C gcd N ) ) -> ( s e. NN <-> ( N / ( C gcd N ) ) e. NN ) ) |
|
| 141 | 140 | eqcoms | |- ( ( N / ( C gcd N ) ) = s -> ( s e. NN <-> ( N / ( C gcd N ) ) e. NN ) ) |
| 142 | 141 | adantl | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( s e. NN <-> ( N / ( C gcd N ) ) e. NN ) ) |
| 143 | 139 142 | mpbird | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> s e. NN ) |
| 144 | 133 143 | jca | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( r e. ZZ /\ s e. NN ) ) |
| 145 | 132 144 | jca | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) ) |
| 146 | simpr | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( N / ( C gcd N ) ) = s ) |
|
| 147 | 145 146 | jca | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) /\ ( N / ( C gcd N ) ) = s ) ) |
| 148 | nnz | |- ( s e. NN -> s e. ZZ ) |
|
| 149 | 148 | adantl | |- ( ( r e. ZZ /\ s e. NN ) -> s e. ZZ ) |
| 150 | 149 | anim2i | |- ( ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) -> ( k e. ZZ /\ s e. ZZ ) ) |
| 151 | 150 | adantl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( k e. ZZ /\ s e. ZZ ) ) |
| 152 | dvdsmul2 | |- ( ( k e. ZZ /\ s e. ZZ ) -> s || ( k x. s ) ) |
|
| 153 | 151 152 | syl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> s || ( k x. s ) ) |
| 154 | breq2 | |- ( ( k x. s ) = ( ( A - B ) x. r ) -> ( s || ( k x. s ) <-> s || ( ( A - B ) x. r ) ) ) |
|
| 155 | zsubcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ ) |
|
| 156 | 155 | zcnd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. CC ) |
| 157 | 156 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( A - B ) e. CC ) |
| 158 | zcn | |- ( r e. ZZ -> r e. CC ) |
|
| 159 | 158 | adantr | |- ( ( r e. ZZ /\ s e. NN ) -> r e. CC ) |
| 160 | 159 | adantl | |- ( ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) -> r e. CC ) |
| 161 | 160 | adantl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> r e. CC ) |
| 162 | 157 161 | mulcomd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( A - B ) x. r ) = ( r x. ( A - B ) ) ) |
| 163 | 162 | breq2d | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( s || ( ( A - B ) x. r ) <-> s || ( r x. ( A - B ) ) ) ) |
| 164 | 148 | anim2i | |- ( ( r e. ZZ /\ s e. NN ) -> ( r e. ZZ /\ s e. ZZ ) ) |
| 165 | gcdcom | |- ( ( r e. ZZ /\ s e. ZZ ) -> ( r gcd s ) = ( s gcd r ) ) |
|
| 166 | 164 165 | syl | |- ( ( r e. ZZ /\ s e. NN ) -> ( r gcd s ) = ( s gcd r ) ) |
| 167 | 166 | eqeq1d | |- ( ( r e. ZZ /\ s e. NN ) -> ( ( r gcd s ) = 1 <-> ( s gcd r ) = 1 ) ) |
| 168 | 167 | adantl | |- ( ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) -> ( ( r gcd s ) = 1 <-> ( s gcd r ) = 1 ) ) |
| 169 | 168 | adantl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( r gcd s ) = 1 <-> ( s gcd r ) = 1 ) ) |
| 170 | 164 | adantl | |- ( ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) -> ( r e. ZZ /\ s e. ZZ ) ) |
| 171 | 170 | ancomd | |- ( ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) -> ( s e. ZZ /\ r e. ZZ ) ) |
| 172 | 155 171 | anim12i | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( A - B ) e. ZZ /\ ( s e. ZZ /\ r e. ZZ ) ) ) |
| 173 | 172 | ancomd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( s e. ZZ /\ r e. ZZ ) /\ ( A - B ) e. ZZ ) ) |
| 174 | df-3an | |- ( ( s e. ZZ /\ r e. ZZ /\ ( A - B ) e. ZZ ) <-> ( ( s e. ZZ /\ r e. ZZ ) /\ ( A - B ) e. ZZ ) ) |
|
| 175 | 173 174 | sylibr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( s e. ZZ /\ r e. ZZ /\ ( A - B ) e. ZZ ) ) |
| 176 | coprmdvds | |- ( ( s e. ZZ /\ r e. ZZ /\ ( A - B ) e. ZZ ) -> ( ( s || ( r x. ( A - B ) ) /\ ( s gcd r ) = 1 ) -> s || ( A - B ) ) ) |
|
| 177 | 175 176 | syl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( s || ( r x. ( A - B ) ) /\ ( s gcd r ) = 1 ) -> s || ( A - B ) ) ) |
| 178 | simpr | |- ( ( r e. ZZ /\ s e. NN ) -> s e. NN ) |
|
| 179 | 178 | adantl | |- ( ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) -> s e. NN ) |
| 180 | 179 | anim2i | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( A e. ZZ /\ B e. ZZ ) /\ s e. NN ) ) |
| 181 | 180 | ancomd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( s e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) ) |
| 182 | 3anass | |- ( ( s e. NN /\ A e. ZZ /\ B e. ZZ ) <-> ( s e. NN /\ ( A e. ZZ /\ B e. ZZ ) ) ) |
|
| 183 | 181 182 | sylibr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( s e. NN /\ A e. ZZ /\ B e. ZZ ) ) |
| 184 | moddvds | |- ( ( s e. NN /\ A e. ZZ /\ B e. ZZ ) -> ( ( A mod s ) = ( B mod s ) <-> s || ( A - B ) ) ) |
|
| 185 | 183 184 | syl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( A mod s ) = ( B mod s ) <-> s || ( A - B ) ) ) |
| 186 | 177 185 | sylibrd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( s || ( r x. ( A - B ) ) /\ ( s gcd r ) = 1 ) -> ( A mod s ) = ( B mod s ) ) ) |
| 187 | 186 | expcomd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( s gcd r ) = 1 -> ( s || ( r x. ( A - B ) ) -> ( A mod s ) = ( B mod s ) ) ) ) |
| 188 | 169 187 | sylbid | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( r gcd s ) = 1 -> ( s || ( r x. ( A - B ) ) -> ( A mod s ) = ( B mod s ) ) ) ) |
| 189 | 188 | com23 | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( s || ( r x. ( A - B ) ) -> ( ( r gcd s ) = 1 -> ( A mod s ) = ( B mod s ) ) ) ) |
| 190 | 163 189 | sylbid | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( s || ( ( A - B ) x. r ) -> ( ( r gcd s ) = 1 -> ( A mod s ) = ( B mod s ) ) ) ) |
| 191 | 190 | com3l | |- ( s || ( ( A - B ) x. r ) -> ( ( r gcd s ) = 1 -> ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( A mod s ) = ( B mod s ) ) ) ) |
| 192 | 154 191 | biimtrdi | |- ( ( k x. s ) = ( ( A - B ) x. r ) -> ( s || ( k x. s ) -> ( ( r gcd s ) = 1 -> ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( A mod s ) = ( B mod s ) ) ) ) ) |
| 193 | 192 | com14 | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( s || ( k x. s ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod s ) = ( B mod s ) ) ) ) ) |
| 194 | 153 193 | mpd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod s ) = ( B mod s ) ) ) ) |
| 195 | 194 | ex | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod s ) = ( B mod s ) ) ) ) ) |
| 196 | 195 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod s ) = ( B mod s ) ) ) ) ) |
| 197 | 196 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( k e. ZZ /\ ( r e. ZZ /\ s e. NN ) ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod s ) = ( B mod s ) ) ) ) ) |
| 198 | 197 | impl | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod s ) = ( B mod s ) ) ) ) |
| 199 | 198 | adantr | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod s ) = ( B mod s ) ) ) ) |
| 200 | 199 | imp | |- ( ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) /\ ( N / ( C gcd N ) ) = s ) /\ ( r gcd s ) = 1 ) -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod s ) = ( B mod s ) ) ) |
| 201 | eqtr2 | |- ( ( ( N / ( C gcd N ) ) = M /\ ( N / ( C gcd N ) ) = s ) -> M = s ) |
|
| 202 | oveq2 | |- ( M = s -> ( A mod M ) = ( A mod s ) ) |
|
| 203 | oveq2 | |- ( M = s -> ( B mod M ) = ( B mod s ) ) |
|
| 204 | 202 203 | eqeq12d | |- ( M = s -> ( ( A mod M ) = ( B mod M ) <-> ( A mod s ) = ( B mod s ) ) ) |
| 205 | 201 204 | syl | |- ( ( ( N / ( C gcd N ) ) = M /\ ( N / ( C gcd N ) ) = s ) -> ( ( A mod M ) = ( B mod M ) <-> ( A mod s ) = ( B mod s ) ) ) |
| 206 | 205 | ex | |- ( ( N / ( C gcd N ) ) = M -> ( ( N / ( C gcd N ) ) = s -> ( ( A mod M ) = ( B mod M ) <-> ( A mod s ) = ( B mod s ) ) ) ) |
| 207 | 206 | eqcoms | |- ( M = ( N / ( C gcd N ) ) -> ( ( N / ( C gcd N ) ) = s -> ( ( A mod M ) = ( B mod M ) <-> ( A mod s ) = ( B mod s ) ) ) ) |
| 208 | 207 | adantl | |- ( ( N e. NN /\ M = ( N / ( C gcd N ) ) ) -> ( ( N / ( C gcd N ) ) = s -> ( ( A mod M ) = ( B mod M ) <-> ( A mod s ) = ( B mod s ) ) ) ) |
| 209 | 208 | adantl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( N / ( C gcd N ) ) = s -> ( ( A mod M ) = ( B mod M ) <-> ( A mod s ) = ( B mod s ) ) ) ) |
| 210 | 209 | ad2antrr | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) -> ( ( N / ( C gcd N ) ) = s -> ( ( A mod M ) = ( B mod M ) <-> ( A mod s ) = ( B mod s ) ) ) ) |
| 211 | 210 | imp | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( ( A mod M ) = ( B mod M ) <-> ( A mod s ) = ( B mod s ) ) ) |
| 212 | 211 | adantr | |- ( ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) /\ ( N / ( C gcd N ) ) = s ) /\ ( r gcd s ) = 1 ) -> ( ( A mod M ) = ( B mod M ) <-> ( A mod s ) = ( B mod s ) ) ) |
| 213 | 200 212 | sylibrd | |- ( ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) /\ ( N / ( C gcd N ) ) = s ) /\ ( r gcd s ) = 1 ) -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod M ) = ( B mod M ) ) ) |
| 214 | 213 | ex | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. NN ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod M ) = ( B mod M ) ) ) ) |
| 215 | 147 214 | syl | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( N / ( C gcd N ) ) = s ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod M ) = ( B mod M ) ) ) ) |
| 216 | 215 | ex | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( N / ( C gcd N ) ) = s -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod M ) = ( B mod M ) ) ) ) ) |
| 217 | 131 216 | sylbird | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( N = ( ( C gcd N ) x. s ) -> ( ( r gcd s ) = 1 -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod M ) = ( B mod M ) ) ) ) ) |
| 218 | 217 | com3l | |- ( N = ( ( C gcd N ) x. s ) -> ( ( r gcd s ) = 1 -> ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod M ) = ( B mod M ) ) ) ) ) |
| 219 | 218 | a1i | |- ( C = ( ( C gcd N ) x. r ) -> ( N = ( ( C gcd N ) x. s ) -> ( ( r gcd s ) = 1 -> ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod M ) = ( B mod M ) ) ) ) ) ) |
| 220 | 219 | 3imp | |- ( ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) -> ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod M ) = ( B mod M ) ) ) ) |
| 221 | 220 | impcom | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( ( k x. s ) = ( ( A - B ) x. r ) -> ( A mod M ) = ( B mod M ) ) ) |
| 222 | 123 221 | sylbid | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( ( k x. s ) = ( ( A x. r ) - ( B x. r ) ) -> ( A mod M ) = ( B mod M ) ) ) |
| 223 | 110 222 | sylbid | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( ( k x. ( ( C gcd N ) x. s ) ) = ( ( A x. ( ( C gcd N ) x. r ) ) - ( B x. ( ( C gcd N ) x. r ) ) ) -> ( A mod M ) = ( B mod M ) ) ) |
| 224 | 31 223 | sylbid | |- ( ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) /\ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) ) -> ( ( k x. N ) = ( ( A x. C ) - ( B x. C ) ) -> ( A mod M ) = ( B mod M ) ) ) |
| 225 | 224 | ex | |- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) /\ ( r e. ZZ /\ s e. ZZ ) ) -> ( ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) -> ( ( k x. N ) = ( ( A x. C ) - ( B x. C ) ) -> ( A mod M ) = ( B mod M ) ) ) ) |
| 226 | 225 | rexlimdvva | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> ( E. r e. ZZ E. s e. ZZ ( C = ( ( C gcd N ) x. r ) /\ N = ( ( C gcd N ) x. s ) /\ ( r gcd s ) = 1 ) -> ( ( k x. N ) = ( ( A x. C ) - ( B x. C ) ) -> ( A mod M ) = ( B mod M ) ) ) ) |
| 227 | 22 226 | mpd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) /\ k e. ZZ ) -> ( ( k x. N ) = ( ( A x. C ) - ( B x. C ) ) -> ( A mod M ) = ( B mod M ) ) ) |
| 228 | 227 | rexlimdva | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( E. k e. ZZ ( k x. N ) = ( ( A x. C ) - ( B x. C ) ) -> ( A mod M ) = ( B mod M ) ) ) |
| 229 | 7 228 | sylbid | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( N e. NN /\ M = ( N / ( C gcd N ) ) ) ) -> ( ( ( A x. C ) mod N ) = ( ( B x. C ) mod N ) -> ( A mod M ) = ( B mod M ) ) ) |