This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of congruence by integer multiple (see ProofWiki "Congruence (Number Theory)", 11-Jul-2021, https://proofwiki.org/wiki/Definition:Congruence_(Number_Theory) ): An integer A is congruent to an integer B modulo M if their difference is a multiple of M . See also the definition in ApostolNT p. 104: "... a is congruent to b modulo m , and we write a == b (mod m ) if m divides the difference a - b ", or Wikipedia "Modular arithmetic - Congruence", https://en.wikipedia.org/wiki/Modular_arithmetic#Congruence , 11-Jul-2021,: "Given an integer n > 1, called a modulus, two integers are said to be congruent modulo n, if n is a divisor of their difference (i.e., if there is an integer k such that a-b = kn)". (Contributed by AV, 11-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | congr | |- ( ( A e. ZZ /\ B e. ZZ /\ M e. NN ) -> ( ( A mod M ) = ( B mod M ) <-> E. n e. ZZ ( n x. M ) = ( A - B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moddvds | |- ( ( M e. NN /\ A e. ZZ /\ B e. ZZ ) -> ( ( A mod M ) = ( B mod M ) <-> M || ( A - B ) ) ) |
|
| 2 | 1 | 3coml | |- ( ( A e. ZZ /\ B e. ZZ /\ M e. NN ) -> ( ( A mod M ) = ( B mod M ) <-> M || ( A - B ) ) ) |
| 3 | simp3 | |- ( ( A e. ZZ /\ B e. ZZ /\ M e. NN ) -> M e. NN ) |
|
| 4 | 3 | nnzd | |- ( ( A e. ZZ /\ B e. ZZ /\ M e. NN ) -> M e. ZZ ) |
| 5 | zsubcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ ) |
|
| 6 | 5 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ M e. NN ) -> ( A - B ) e. ZZ ) |
| 7 | divides | |- ( ( M e. ZZ /\ ( A - B ) e. ZZ ) -> ( M || ( A - B ) <-> E. n e. ZZ ( n x. M ) = ( A - B ) ) ) |
|
| 8 | 4 6 7 | syl2anc | |- ( ( A e. ZZ /\ B e. ZZ /\ M e. NN ) -> ( M || ( A - B ) <-> E. n e. ZZ ( n x. M ) = ( A - B ) ) ) |
| 9 | 2 8 | bitrd | |- ( ( A e. ZZ /\ B e. ZZ /\ M e. NN ) -> ( ( A mod M ) = ( B mod M ) <-> E. n e. ZZ ( n x. M ) = ( A - B ) ) ) |