This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The second Chebyshev function at a successor. (Contributed by Mario Carneiro, 11-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chpp1 | |- ( A e. NN0 -> ( psi ` ( A + 1 ) ) = ( ( psi ` A ) + ( Lam ` ( A + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0p1nn | |- ( A e. NN0 -> ( A + 1 ) e. NN ) |
|
| 2 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 3 | 1 2 | eleqtrdi | |- ( A e. NN0 -> ( A + 1 ) e. ( ZZ>= ` 1 ) ) |
| 4 | elfznn | |- ( n e. ( 1 ... ( A + 1 ) ) -> n e. NN ) |
|
| 5 | 4 | adantl | |- ( ( A e. NN0 /\ n e. ( 1 ... ( A + 1 ) ) ) -> n e. NN ) |
| 6 | vmacl | |- ( n e. NN -> ( Lam ` n ) e. RR ) |
|
| 7 | 5 6 | syl | |- ( ( A e. NN0 /\ n e. ( 1 ... ( A + 1 ) ) ) -> ( Lam ` n ) e. RR ) |
| 8 | 7 | recnd | |- ( ( A e. NN0 /\ n e. ( 1 ... ( A + 1 ) ) ) -> ( Lam ` n ) e. CC ) |
| 9 | fveq2 | |- ( n = ( A + 1 ) -> ( Lam ` n ) = ( Lam ` ( A + 1 ) ) ) |
|
| 10 | 3 8 9 | fsumm1 | |- ( A e. NN0 -> sum_ n e. ( 1 ... ( A + 1 ) ) ( Lam ` n ) = ( sum_ n e. ( 1 ... ( ( A + 1 ) - 1 ) ) ( Lam ` n ) + ( Lam ` ( A + 1 ) ) ) ) |
| 11 | nn0re | |- ( A e. NN0 -> A e. RR ) |
|
| 12 | peano2re | |- ( A e. RR -> ( A + 1 ) e. RR ) |
|
| 13 | chpval | |- ( ( A + 1 ) e. RR -> ( psi ` ( A + 1 ) ) = sum_ n e. ( 1 ... ( |_ ` ( A + 1 ) ) ) ( Lam ` n ) ) |
|
| 14 | 11 12 13 | 3syl | |- ( A e. NN0 -> ( psi ` ( A + 1 ) ) = sum_ n e. ( 1 ... ( |_ ` ( A + 1 ) ) ) ( Lam ` n ) ) |
| 15 | nn0z | |- ( A e. NN0 -> A e. ZZ ) |
|
| 16 | 15 | peano2zd | |- ( A e. NN0 -> ( A + 1 ) e. ZZ ) |
| 17 | flid | |- ( ( A + 1 ) e. ZZ -> ( |_ ` ( A + 1 ) ) = ( A + 1 ) ) |
|
| 18 | 16 17 | syl | |- ( A e. NN0 -> ( |_ ` ( A + 1 ) ) = ( A + 1 ) ) |
| 19 | 18 | oveq2d | |- ( A e. NN0 -> ( 1 ... ( |_ ` ( A + 1 ) ) ) = ( 1 ... ( A + 1 ) ) ) |
| 20 | 19 | sumeq1d | |- ( A e. NN0 -> sum_ n e. ( 1 ... ( |_ ` ( A + 1 ) ) ) ( Lam ` n ) = sum_ n e. ( 1 ... ( A + 1 ) ) ( Lam ` n ) ) |
| 21 | 14 20 | eqtrd | |- ( A e. NN0 -> ( psi ` ( A + 1 ) ) = sum_ n e. ( 1 ... ( A + 1 ) ) ( Lam ` n ) ) |
| 22 | chpval | |- ( A e. RR -> ( psi ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) ) |
|
| 23 | 11 22 | syl | |- ( A e. NN0 -> ( psi ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) ) |
| 24 | flid | |- ( A e. ZZ -> ( |_ ` A ) = A ) |
|
| 25 | 15 24 | syl | |- ( A e. NN0 -> ( |_ ` A ) = A ) |
| 26 | nn0cn | |- ( A e. NN0 -> A e. CC ) |
|
| 27 | ax-1cn | |- 1 e. CC |
|
| 28 | pncan | |- ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - 1 ) = A ) |
|
| 29 | 26 27 28 | sylancl | |- ( A e. NN0 -> ( ( A + 1 ) - 1 ) = A ) |
| 30 | 25 29 | eqtr4d | |- ( A e. NN0 -> ( |_ ` A ) = ( ( A + 1 ) - 1 ) ) |
| 31 | 30 | oveq2d | |- ( A e. NN0 -> ( 1 ... ( |_ ` A ) ) = ( 1 ... ( ( A + 1 ) - 1 ) ) ) |
| 32 | 31 | sumeq1d | |- ( A e. NN0 -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) = sum_ n e. ( 1 ... ( ( A + 1 ) - 1 ) ) ( Lam ` n ) ) |
| 33 | 23 32 | eqtrd | |- ( A e. NN0 -> ( psi ` A ) = sum_ n e. ( 1 ... ( ( A + 1 ) - 1 ) ) ( Lam ` n ) ) |
| 34 | 33 | oveq1d | |- ( A e. NN0 -> ( ( psi ` A ) + ( Lam ` ( A + 1 ) ) ) = ( sum_ n e. ( 1 ... ( ( A + 1 ) - 1 ) ) ( Lam ` n ) + ( Lam ` ( A + 1 ) ) ) ) |
| 35 | 10 21 34 | 3eqtr4d | |- ( A e. NN0 -> ( psi ` ( A + 1 ) ) = ( ( psi ` A ) + ( Lam ` ( A + 1 ) ) ) ) |