This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Chebyshev function at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chtnprm | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( θ ‘ ( 𝐴 + 1 ) ) = ( θ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) | |
| 2 | 1 | elin2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝑥 ∈ ℙ ) |
| 3 | simprl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → ¬ ( 𝐴 + 1 ) ∈ ℙ ) | |
| 4 | nelne2 | ⊢ ( ( 𝑥 ∈ ℙ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → 𝑥 ≠ ( 𝐴 + 1 ) ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝑥 ≠ ( 𝐴 + 1 ) ) |
| 6 | velsn | ⊢ ( 𝑥 ∈ { ( 𝐴 + 1 ) } ↔ 𝑥 = ( 𝐴 + 1 ) ) | |
| 7 | 6 | necon3bbii | ⊢ ( ¬ 𝑥 ∈ { ( 𝐴 + 1 ) } ↔ 𝑥 ≠ ( 𝐴 + 1 ) ) |
| 8 | 5 7 | sylibr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → ¬ 𝑥 ∈ { ( 𝐴 + 1 ) } ) |
| 9 | 1 | elin1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝑥 ∈ ( 2 ... ( 𝐴 + 1 ) ) ) |
| 10 | 2z | ⊢ 2 ∈ ℤ | |
| 11 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝐴 ∈ ℂ ) |
| 13 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 14 | pncan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) | |
| 15 | 12 13 14 | sylancl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) |
| 16 | elfzuz2 | ⊢ ( 𝑥 ∈ ( 2 ... ( 𝐴 + 1 ) ) → ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) | |
| 17 | uz2m1nn | ⊢ ( ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 + 1 ) − 1 ) ∈ ℕ ) | |
| 18 | 9 16 17 | 3syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → ( ( 𝐴 + 1 ) − 1 ) ∈ ℕ ) |
| 19 | 15 18 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝐴 ∈ ℕ ) |
| 20 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 21 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 22 | 21 | fveq2i | ⊢ ( ℤ≥ ‘ ( 2 − 1 ) ) = ( ℤ≥ ‘ 1 ) |
| 23 | 20 22 | eqtr4i | ⊢ ℕ = ( ℤ≥ ‘ ( 2 − 1 ) ) |
| 24 | 19 23 | eleqtrdi | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝐴 ∈ ( ℤ≥ ‘ ( 2 − 1 ) ) ) |
| 25 | fzsuc2 | ⊢ ( ( 2 ∈ ℤ ∧ 𝐴 ∈ ( ℤ≥ ‘ ( 2 − 1 ) ) ) → ( 2 ... ( 𝐴 + 1 ) ) = ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ) | |
| 26 | 10 24 25 | sylancr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → ( 2 ... ( 𝐴 + 1 ) ) = ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ) |
| 27 | 9 26 | eleqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝑥 ∈ ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ) |
| 28 | elun | ⊢ ( 𝑥 ∈ ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ↔ ( 𝑥 ∈ ( 2 ... 𝐴 ) ∨ 𝑥 ∈ { ( 𝐴 + 1 ) } ) ) | |
| 29 | 27 28 | sylib | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → ( 𝑥 ∈ ( 2 ... 𝐴 ) ∨ 𝑥 ∈ { ( 𝐴 + 1 ) } ) ) |
| 30 | 29 | ord | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → ( ¬ 𝑥 ∈ ( 2 ... 𝐴 ) → 𝑥 ∈ { ( 𝐴 + 1 ) } ) ) |
| 31 | 8 30 | mt3d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝑥 ∈ ( 2 ... 𝐴 ) ) |
| 32 | 31 2 | elind | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ¬ ( 𝐴 + 1 ) ∈ ℙ ∧ 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) ) → 𝑥 ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
| 33 | 32 | expr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝑥 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) → 𝑥 ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) ) |
| 34 | 33 | ssrdv | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ⊆ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
| 35 | uzid | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
| 36 | 35 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
| 37 | peano2uz | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
| 38 | fzss2 | ⊢ ( ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( 2 ... 𝐴 ) ⊆ ( 2 ... ( 𝐴 + 1 ) ) ) | |
| 39 | ssrin | ⊢ ( ( 2 ... 𝐴 ) ⊆ ( 2 ... ( 𝐴 + 1 ) ) → ( ( 2 ... 𝐴 ) ∩ ℙ ) ⊆ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) | |
| 40 | 36 37 38 39 | 4syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... 𝐴 ) ∩ ℙ ) ⊆ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) |
| 41 | 34 40 | eqssd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
| 42 | peano2z | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 + 1 ) ∈ ℤ ) | |
| 43 | 42 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 + 1 ) ∈ ℤ ) |
| 44 | flid | ⊢ ( ( 𝐴 + 1 ) ∈ ℤ → ( ⌊ ‘ ( 𝐴 + 1 ) ) = ( 𝐴 + 1 ) ) | |
| 45 | 43 44 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( ⌊ ‘ ( 𝐴 + 1 ) ) = ( 𝐴 + 1 ) ) |
| 46 | 45 | oveq2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( 2 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) = ( 2 ... ( 𝐴 + 1 ) ) ) |
| 47 | 46 | ineq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ∩ ℙ ) = ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) |
| 48 | flid | ⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = 𝐴 ) | |
| 49 | 48 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( ⌊ ‘ 𝐴 ) = 𝐴 ) |
| 50 | 49 | oveq2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( 2 ... ( ⌊ ‘ 𝐴 ) ) = ( 2 ... 𝐴 ) ) |
| 51 | 50 | ineq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
| 52 | 41 47 51 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 53 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 54 | 53 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → 𝐴 ∈ ℝ ) |
| 55 | peano2re | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) | |
| 56 | ppisval | ⊢ ( ( 𝐴 + 1 ) ∈ ℝ → ( ( 0 [,] ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ∩ ℙ ) ) | |
| 57 | 54 55 56 | 3syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 0 [,] ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ∩ ℙ ) ) |
| 58 | ppisval | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) | |
| 59 | 54 58 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 60 | 52 57 59 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 0 [,] ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) |
| 61 | 60 | sumeq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → Σ 𝑝 ∈ ( ( 0 [,] ( 𝐴 + 1 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 62 | chtval | ⊢ ( ( 𝐴 + 1 ) ∈ ℝ → ( θ ‘ ( 𝐴 + 1 ) ) = Σ 𝑝 ∈ ( ( 0 [,] ( 𝐴 + 1 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) | |
| 63 | 54 55 62 | 3syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( θ ‘ ( 𝐴 + 1 ) ) = Σ 𝑝 ∈ ( ( 0 [,] ( 𝐴 + 1 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 64 | chtval | ⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) | |
| 65 | 54 64 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( θ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 66 | 61 63 65 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ ( 𝐴 + 1 ) ∈ ℙ ) → ( θ ‘ ( 𝐴 + 1 ) ) = ( θ ‘ 𝐴 ) ) |