This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The characteristic restriction on ring homomorphisms. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chrrhm | |- ( F e. ( R RingHom S ) -> ( chr ` S ) || ( chr ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmrcl1 | |- ( F e. ( R RingHom S ) -> R e. Ring ) |
|
| 2 | eqid | |- ( ZRHom ` R ) = ( ZRHom ` R ) |
|
| 3 | 2 | zrhrhm | |- ( R e. Ring -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) |
| 4 | 1 3 | syl | |- ( F e. ( R RingHom S ) -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) |
| 5 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 6 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 7 | 5 6 | rhmf | |- ( ( ZRHom ` R ) e. ( ZZring RingHom R ) -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
| 8 | ffn | |- ( ( ZRHom ` R ) : ZZ --> ( Base ` R ) -> ( ZRHom ` R ) Fn ZZ ) |
|
| 9 | 4 7 8 | 3syl | |- ( F e. ( R RingHom S ) -> ( ZRHom ` R ) Fn ZZ ) |
| 10 | eqid | |- ( chr ` R ) = ( chr ` R ) |
|
| 11 | 10 | chrcl | |- ( R e. Ring -> ( chr ` R ) e. NN0 ) |
| 12 | nn0z | |- ( ( chr ` R ) e. NN0 -> ( chr ` R ) e. ZZ ) |
|
| 13 | 1 11 12 | 3syl | |- ( F e. ( R RingHom S ) -> ( chr ` R ) e. ZZ ) |
| 14 | fvco2 | |- ( ( ( ZRHom ` R ) Fn ZZ /\ ( chr ` R ) e. ZZ ) -> ( ( F o. ( ZRHom ` R ) ) ` ( chr ` R ) ) = ( F ` ( ( ZRHom ` R ) ` ( chr ` R ) ) ) ) |
|
| 15 | 9 13 14 | syl2anc | |- ( F e. ( R RingHom S ) -> ( ( F o. ( ZRHom ` R ) ) ` ( chr ` R ) ) = ( F ` ( ( ZRHom ` R ) ` ( chr ` R ) ) ) ) |
| 16 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 17 | 10 2 16 | chrid | |- ( R e. Ring -> ( ( ZRHom ` R ) ` ( chr ` R ) ) = ( 0g ` R ) ) |
| 18 | 1 17 | syl | |- ( F e. ( R RingHom S ) -> ( ( ZRHom ` R ) ` ( chr ` R ) ) = ( 0g ` R ) ) |
| 19 | 18 | fveq2d | |- ( F e. ( R RingHom S ) -> ( F ` ( ( ZRHom ` R ) ` ( chr ` R ) ) ) = ( F ` ( 0g ` R ) ) ) |
| 20 | 15 19 | eqtrd | |- ( F e. ( R RingHom S ) -> ( ( F o. ( ZRHom ` R ) ) ` ( chr ` R ) ) = ( F ` ( 0g ` R ) ) ) |
| 21 | rhmco | |- ( ( F e. ( R RingHom S ) /\ ( ZRHom ` R ) e. ( ZZring RingHom R ) ) -> ( F o. ( ZRHom ` R ) ) e. ( ZZring RingHom S ) ) |
|
| 22 | 4 21 | mpdan | |- ( F e. ( R RingHom S ) -> ( F o. ( ZRHom ` R ) ) e. ( ZZring RingHom S ) ) |
| 23 | rhmrcl2 | |- ( F e. ( R RingHom S ) -> S e. Ring ) |
|
| 24 | eqid | |- ( ZRHom ` S ) = ( ZRHom ` S ) |
|
| 25 | 24 | zrhrhmb | |- ( S e. Ring -> ( ( F o. ( ZRHom ` R ) ) e. ( ZZring RingHom S ) <-> ( F o. ( ZRHom ` R ) ) = ( ZRHom ` S ) ) ) |
| 26 | 23 25 | syl | |- ( F e. ( R RingHom S ) -> ( ( F o. ( ZRHom ` R ) ) e. ( ZZring RingHom S ) <-> ( F o. ( ZRHom ` R ) ) = ( ZRHom ` S ) ) ) |
| 27 | 22 26 | mpbid | |- ( F e. ( R RingHom S ) -> ( F o. ( ZRHom ` R ) ) = ( ZRHom ` S ) ) |
| 28 | 27 | fveq1d | |- ( F e. ( R RingHom S ) -> ( ( F o. ( ZRHom ` R ) ) ` ( chr ` R ) ) = ( ( ZRHom ` S ) ` ( chr ` R ) ) ) |
| 29 | rhmghm | |- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
|
| 30 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 31 | 16 30 | ghmid | |- ( F e. ( R GrpHom S ) -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) |
| 32 | 29 31 | syl | |- ( F e. ( R RingHom S ) -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) |
| 33 | 20 28 32 | 3eqtr3d | |- ( F e. ( R RingHom S ) -> ( ( ZRHom ` S ) ` ( chr ` R ) ) = ( 0g ` S ) ) |
| 34 | eqid | |- ( chr ` S ) = ( chr ` S ) |
|
| 35 | 34 24 30 | chrdvds | |- ( ( S e. Ring /\ ( chr ` R ) e. ZZ ) -> ( ( chr ` S ) || ( chr ` R ) <-> ( ( ZRHom ` S ) ` ( chr ` R ) ) = ( 0g ` S ) ) ) |
| 36 | 23 13 35 | syl2anc | |- ( F e. ( R RingHom S ) -> ( ( chr ` S ) || ( chr ` R ) <-> ( ( ZRHom ` S ) ` ( chr ` R ) ) = ( 0g ` S ) ) ) |
| 37 | 33 36 | mpbird | |- ( F e. ( R RingHom S ) -> ( chr ` S ) || ( chr ` R ) ) |