This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The characteristic restriction on ring homomorphisms. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chrrhm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( chr ‘ 𝑆 ) ∥ ( chr ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmrcl1 | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) | |
| 2 | eqid | ⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) | |
| 3 | 2 | zrhrhm | ⊢ ( 𝑅 ∈ Ring → ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) ) |
| 4 | 1 3 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) ) |
| 5 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 7 | 5 6 | rhmf | ⊢ ( ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
| 8 | ffn | ⊢ ( ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) → ( ℤRHom ‘ 𝑅 ) Fn ℤ ) | |
| 9 | 4 7 8 | 3syl | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ℤRHom ‘ 𝑅 ) Fn ℤ ) |
| 10 | eqid | ⊢ ( chr ‘ 𝑅 ) = ( chr ‘ 𝑅 ) | |
| 11 | 10 | chrcl | ⊢ ( 𝑅 ∈ Ring → ( chr ‘ 𝑅 ) ∈ ℕ0 ) |
| 12 | nn0z | ⊢ ( ( chr ‘ 𝑅 ) ∈ ℕ0 → ( chr ‘ 𝑅 ) ∈ ℤ ) | |
| 13 | 1 11 12 | 3syl | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( chr ‘ 𝑅 ) ∈ ℤ ) |
| 14 | fvco2 | ⊢ ( ( ( ℤRHom ‘ 𝑅 ) Fn ℤ ∧ ( chr ‘ 𝑅 ) ∈ ℤ ) → ( ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) ‘ ( chr ‘ 𝑅 ) ) = ( 𝐹 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( chr ‘ 𝑅 ) ) ) ) | |
| 15 | 9 13 14 | syl2anc | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) ‘ ( chr ‘ 𝑅 ) ) = ( 𝐹 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( chr ‘ 𝑅 ) ) ) ) |
| 16 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 17 | 10 2 16 | chrid | ⊢ ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ ( chr ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 18 | 1 17 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( chr ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 19 | 18 | fveq2d | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( chr ‘ 𝑅 ) ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 20 | 15 19 | eqtrd | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) ‘ ( chr ‘ 𝑅 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 21 | rhmco | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) ) → ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) ∈ ( ℤring RingHom 𝑆 ) ) | |
| 22 | 4 21 | mpdan | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) ∈ ( ℤring RingHom 𝑆 ) ) |
| 23 | rhmrcl2 | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) | |
| 24 | eqid | ⊢ ( ℤRHom ‘ 𝑆 ) = ( ℤRHom ‘ 𝑆 ) | |
| 25 | 24 | zrhrhmb | ⊢ ( 𝑆 ∈ Ring → ( ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) ∈ ( ℤring RingHom 𝑆 ) ↔ ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) = ( ℤRHom ‘ 𝑆 ) ) ) |
| 26 | 23 25 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) ∈ ( ℤring RingHom 𝑆 ) ↔ ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) = ( ℤRHom ‘ 𝑆 ) ) ) |
| 27 | 22 26 | mpbid | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) = ( ℤRHom ‘ 𝑆 ) ) |
| 28 | 27 | fveq1d | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ( 𝐹 ∘ ( ℤRHom ‘ 𝑅 ) ) ‘ ( chr ‘ 𝑅 ) ) = ( ( ℤRHom ‘ 𝑆 ) ‘ ( chr ‘ 𝑅 ) ) ) |
| 29 | rhmghm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) | |
| 30 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 31 | 16 30 | ghmid | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 32 | 29 31 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 33 | 20 28 32 | 3eqtr3d | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ( ℤRHom ‘ 𝑆 ) ‘ ( chr ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 34 | eqid | ⊢ ( chr ‘ 𝑆 ) = ( chr ‘ 𝑆 ) | |
| 35 | 34 24 30 | chrdvds | ⊢ ( ( 𝑆 ∈ Ring ∧ ( chr ‘ 𝑅 ) ∈ ℤ ) → ( ( chr ‘ 𝑆 ) ∥ ( chr ‘ 𝑅 ) ↔ ( ( ℤRHom ‘ 𝑆 ) ‘ ( chr ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) ) |
| 36 | 23 13 35 | syl2anc | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ( chr ‘ 𝑆 ) ∥ ( chr ‘ 𝑅 ) ↔ ( ( ℤRHom ‘ 𝑆 ) ‘ ( chr ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) ) |
| 37 | 33 36 | mpbird | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( chr ‘ 𝑆 ) ∥ ( chr ‘ 𝑅 ) ) |