This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZRHom homomorphism is the unique ring homomorphism from ZZ . (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 12-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zrhval.l | |- L = ( ZRHom ` R ) |
|
| Assertion | zrhrhmb | |- ( R e. Ring -> ( F e. ( ZZring RingHom R ) <-> F = L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhval.l | |- L = ( ZRHom ` R ) |
|
| 2 | eqid | |- ( .g ` R ) = ( .g ` R ) |
|
| 3 | eqid | |- ( n e. ZZ |-> ( n ( .g ` R ) ( 1r ` R ) ) ) = ( n e. ZZ |-> ( n ( .g ` R ) ( 1r ` R ) ) ) |
|
| 4 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 5 | 2 3 4 | mulgrhm2 | |- ( R e. Ring -> ( ZZring RingHom R ) = { ( n e. ZZ |-> ( n ( .g ` R ) ( 1r ` R ) ) ) } ) |
| 6 | 1 2 4 | zrhval2 | |- ( R e. Ring -> L = ( n e. ZZ |-> ( n ( .g ` R ) ( 1r ` R ) ) ) ) |
| 7 | 6 | sneqd | |- ( R e. Ring -> { L } = { ( n e. ZZ |-> ( n ( .g ` R ) ( 1r ` R ) ) ) } ) |
| 8 | 5 7 | eqtr4d | |- ( R e. Ring -> ( ZZring RingHom R ) = { L } ) |
| 9 | 8 | eleq2d | |- ( R e. Ring -> ( F e. ( ZZring RingHom R ) <-> F e. { L } ) ) |
| 10 | 1 | fvexi | |- L e. _V |
| 11 | 10 | elsn2 | |- ( F e. { L } <-> F = L ) |
| 12 | 9 11 | bitrdi | |- ( R e. Ring -> ( F e. ( ZZring RingHom R ) <-> F = L ) ) |