This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The canonical ZZ ring homomorphism applied to a ring's characteristic is zero. (Contributed by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chrcl.c | |- C = ( chr ` R ) |
|
| chrid.l | |- L = ( ZRHom ` R ) |
||
| chrid.z | |- .0. = ( 0g ` R ) |
||
| Assertion | chrid | |- ( R e. Ring -> ( L ` C ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chrcl.c | |- C = ( chr ` R ) |
|
| 2 | chrid.l | |- L = ( ZRHom ` R ) |
|
| 3 | chrid.z | |- .0. = ( 0g ` R ) |
|
| 4 | 1 | chrcl | |- ( R e. Ring -> C e. NN0 ) |
| 5 | 4 | nn0zd | |- ( R e. Ring -> C e. ZZ ) |
| 6 | eqid | |- ( .g ` R ) = ( .g ` R ) |
|
| 7 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 8 | 2 6 7 | zrhmulg | |- ( ( R e. Ring /\ C e. ZZ ) -> ( L ` C ) = ( C ( .g ` R ) ( 1r ` R ) ) ) |
| 9 | 5 8 | mpdan | |- ( R e. Ring -> ( L ` C ) = ( C ( .g ` R ) ( 1r ` R ) ) ) |
| 10 | eqid | |- ( od ` R ) = ( od ` R ) |
|
| 11 | 10 7 1 | chrval | |- ( ( od ` R ) ` ( 1r ` R ) ) = C |
| 12 | 11 | oveq1i | |- ( ( ( od ` R ) ` ( 1r ` R ) ) ( .g ` R ) ( 1r ` R ) ) = ( C ( .g ` R ) ( 1r ` R ) ) |
| 13 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 14 | 13 7 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 15 | 13 10 6 3 | odid | |- ( ( 1r ` R ) e. ( Base ` R ) -> ( ( ( od ` R ) ` ( 1r ` R ) ) ( .g ` R ) ( 1r ` R ) ) = .0. ) |
| 16 | 14 15 | syl | |- ( R e. Ring -> ( ( ( od ` R ) ` ( 1r ` R ) ) ( .g ` R ) ( 1r ` R ) ) = .0. ) |
| 17 | 12 16 | eqtr3id | |- ( R e. Ring -> ( C ( .g ` R ) ( 1r ` R ) ) = .0. ) |
| 18 | 9 17 | eqtrd | |- ( R e. Ring -> ( L ` C ) = .0. ) |