This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rhmco | |- ( ( F e. ( T RingHom U ) /\ G e. ( S RingHom T ) ) -> ( F o. G ) e. ( S RingHom U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmrcl2 | |- ( F e. ( T RingHom U ) -> U e. Ring ) |
|
| 2 | rhmrcl1 | |- ( G e. ( S RingHom T ) -> S e. Ring ) |
|
| 3 | 1 2 | anim12ci | |- ( ( F e. ( T RingHom U ) /\ G e. ( S RingHom T ) ) -> ( S e. Ring /\ U e. Ring ) ) |
| 4 | rhmghm | |- ( F e. ( T RingHom U ) -> F e. ( T GrpHom U ) ) |
|
| 5 | rhmghm | |- ( G e. ( S RingHom T ) -> G e. ( S GrpHom T ) ) |
|
| 6 | ghmco | |- ( ( F e. ( T GrpHom U ) /\ G e. ( S GrpHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( F e. ( T RingHom U ) /\ G e. ( S RingHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) |
| 8 | eqid | |- ( mulGrp ` T ) = ( mulGrp ` T ) |
|
| 9 | eqid | |- ( mulGrp ` U ) = ( mulGrp ` U ) |
|
| 10 | 8 9 | rhmmhm | |- ( F e. ( T RingHom U ) -> F e. ( ( mulGrp ` T ) MndHom ( mulGrp ` U ) ) ) |
| 11 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 12 | 11 8 | rhmmhm | |- ( G e. ( S RingHom T ) -> G e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) |
| 13 | mhmco | |- ( ( F e. ( ( mulGrp ` T ) MndHom ( mulGrp ` U ) ) /\ G e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) -> ( F o. G ) e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) |
|
| 14 | 10 12 13 | syl2an | |- ( ( F e. ( T RingHom U ) /\ G e. ( S RingHom T ) ) -> ( F o. G ) e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) |
| 15 | 7 14 | jca | |- ( ( F e. ( T RingHom U ) /\ G e. ( S RingHom T ) ) -> ( ( F o. G ) e. ( S GrpHom U ) /\ ( F o. G ) e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) |
| 16 | 11 9 | isrhm | |- ( ( F o. G ) e. ( S RingHom U ) <-> ( ( S e. Ring /\ U e. Ring ) /\ ( ( F o. G ) e. ( S GrpHom U ) /\ ( F o. G ) e. ( ( mulGrp ` S ) MndHom ( mulGrp ` U ) ) ) ) ) |
| 17 | 3 15 16 | sylanbrc | |- ( ( F e. ( T RingHom U ) /\ G e. ( S RingHom T ) ) -> ( F o. G ) e. ( S RingHom U ) ) |