This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The characteristic of a domain can only be zero or a prime. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domnchr | |- ( R e. Domn -> ( ( chr ` R ) = 0 \/ ( chr ` R ) e. Prime ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | |- ( ( chr ` R ) =/= 0 <-> -. ( chr ` R ) = 0 ) |
|
| 2 | domnring | |- ( R e. Domn -> R e. Ring ) |
|
| 3 | eqid | |- ( chr ` R ) = ( chr ` R ) |
|
| 4 | 3 | chrcl | |- ( R e. Ring -> ( chr ` R ) e. NN0 ) |
| 5 | 2 4 | syl | |- ( R e. Domn -> ( chr ` R ) e. NN0 ) |
| 6 | 5 | adantr | |- ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) -> ( chr ` R ) e. NN0 ) |
| 7 | simpr | |- ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) -> ( chr ` R ) =/= 0 ) |
|
| 8 | eldifsn | |- ( ( chr ` R ) e. ( NN0 \ { 0 } ) <-> ( ( chr ` R ) e. NN0 /\ ( chr ` R ) =/= 0 ) ) |
|
| 9 | 6 7 8 | sylanbrc | |- ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) -> ( chr ` R ) e. ( NN0 \ { 0 } ) ) |
| 10 | dfn2 | |- NN = ( NN0 \ { 0 } ) |
|
| 11 | 9 10 | eleqtrrdi | |- ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) -> ( chr ` R ) e. NN ) |
| 12 | domnnzr | |- ( R e. Domn -> R e. NzRing ) |
|
| 13 | nzrring | |- ( R e. NzRing -> R e. Ring ) |
|
| 14 | chrnzr | |- ( R e. Ring -> ( R e. NzRing <-> ( chr ` R ) =/= 1 ) ) |
|
| 15 | 13 14 | syl | |- ( R e. NzRing -> ( R e. NzRing <-> ( chr ` R ) =/= 1 ) ) |
| 16 | 15 | ibi | |- ( R e. NzRing -> ( chr ` R ) =/= 1 ) |
| 17 | 12 16 | syl | |- ( R e. Domn -> ( chr ` R ) =/= 1 ) |
| 18 | 17 | adantr | |- ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) -> ( chr ` R ) =/= 1 ) |
| 19 | eluz2b3 | |- ( ( chr ` R ) e. ( ZZ>= ` 2 ) <-> ( ( chr ` R ) e. NN /\ ( chr ` R ) =/= 1 ) ) |
|
| 20 | 11 18 19 | sylanbrc | |- ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) -> ( chr ` R ) e. ( ZZ>= ` 2 ) ) |
| 21 | 2 | ad2antrr | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> R e. Ring ) |
| 22 | eqid | |- ( ZRHom ` R ) = ( ZRHom ` R ) |
|
| 23 | 22 | zrhrhm | |- ( R e. Ring -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) |
| 24 | 21 23 | syl | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) |
| 25 | simprl | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. ZZ ) |
|
| 26 | simprr | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. ZZ ) |
|
| 27 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 28 | zringmulr | |- x. = ( .r ` ZZring ) |
|
| 29 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 30 | 27 28 29 | rhmmul | |- ( ( ( ZRHom ` R ) e. ( ZZring RingHom R ) /\ x e. ZZ /\ y e. ZZ ) -> ( ( ZRHom ` R ) ` ( x x. y ) ) = ( ( ( ZRHom ` R ) ` x ) ( .r ` R ) ( ( ZRHom ` R ) ` y ) ) ) |
| 31 | 24 25 26 30 | syl3anc | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ZRHom ` R ) ` ( x x. y ) ) = ( ( ( ZRHom ` R ) ` x ) ( .r ` R ) ( ( ZRHom ` R ) ` y ) ) ) |
| 32 | 31 | eqeq1d | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( ZRHom ` R ) ` ( x x. y ) ) = ( 0g ` R ) <-> ( ( ( ZRHom ` R ) ` x ) ( .r ` R ) ( ( ZRHom ` R ) ` y ) ) = ( 0g ` R ) ) ) |
| 33 | simpll | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> R e. Domn ) |
|
| 34 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 35 | 27 34 | rhmf | |- ( ( ZRHom ` R ) e. ( ZZring RingHom R ) -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
| 36 | 24 35 | syl | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
| 37 | 36 25 | ffvelcdmd | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ZRHom ` R ) ` x ) e. ( Base ` R ) ) |
| 38 | 36 26 | ffvelcdmd | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ZRHom ` R ) ` y ) e. ( Base ` R ) ) |
| 39 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 40 | 34 29 39 | domneq0 | |- ( ( R e. Domn /\ ( ( ZRHom ` R ) ` x ) e. ( Base ` R ) /\ ( ( ZRHom ` R ) ` y ) e. ( Base ` R ) ) -> ( ( ( ( ZRHom ` R ) ` x ) ( .r ` R ) ( ( ZRHom ` R ) ` y ) ) = ( 0g ` R ) <-> ( ( ( ZRHom ` R ) ` x ) = ( 0g ` R ) \/ ( ( ZRHom ` R ) ` y ) = ( 0g ` R ) ) ) ) |
| 41 | 33 37 38 40 | syl3anc | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( ( ZRHom ` R ) ` x ) ( .r ` R ) ( ( ZRHom ` R ) ` y ) ) = ( 0g ` R ) <-> ( ( ( ZRHom ` R ) ` x ) = ( 0g ` R ) \/ ( ( ZRHom ` R ) ` y ) = ( 0g ` R ) ) ) ) |
| 42 | 32 41 | bitrd | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( ZRHom ` R ) ` ( x x. y ) ) = ( 0g ` R ) <-> ( ( ( ZRHom ` R ) ` x ) = ( 0g ` R ) \/ ( ( ZRHom ` R ) ` y ) = ( 0g ` R ) ) ) ) |
| 43 | 42 | biimpd | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( ZRHom ` R ) ` ( x x. y ) ) = ( 0g ` R ) -> ( ( ( ZRHom ` R ) ` x ) = ( 0g ` R ) \/ ( ( ZRHom ` R ) ` y ) = ( 0g ` R ) ) ) ) |
| 44 | zmulcl | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( x x. y ) e. ZZ ) |
|
| 45 | 44 | adantl | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x x. y ) e. ZZ ) |
| 46 | 3 22 39 | chrdvds | |- ( ( R e. Ring /\ ( x x. y ) e. ZZ ) -> ( ( chr ` R ) || ( x x. y ) <-> ( ( ZRHom ` R ) ` ( x x. y ) ) = ( 0g ` R ) ) ) |
| 47 | 21 45 46 | syl2anc | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( chr ` R ) || ( x x. y ) <-> ( ( ZRHom ` R ) ` ( x x. y ) ) = ( 0g ` R ) ) ) |
| 48 | 3 22 39 | chrdvds | |- ( ( R e. Ring /\ x e. ZZ ) -> ( ( chr ` R ) || x <-> ( ( ZRHom ` R ) ` x ) = ( 0g ` R ) ) ) |
| 49 | 21 25 48 | syl2anc | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( chr ` R ) || x <-> ( ( ZRHom ` R ) ` x ) = ( 0g ` R ) ) ) |
| 50 | 3 22 39 | chrdvds | |- ( ( R e. Ring /\ y e. ZZ ) -> ( ( chr ` R ) || y <-> ( ( ZRHom ` R ) ` y ) = ( 0g ` R ) ) ) |
| 51 | 21 26 50 | syl2anc | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( chr ` R ) || y <-> ( ( ZRHom ` R ) ` y ) = ( 0g ` R ) ) ) |
| 52 | 49 51 | orbi12d | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( chr ` R ) || x \/ ( chr ` R ) || y ) <-> ( ( ( ZRHom ` R ) ` x ) = ( 0g ` R ) \/ ( ( ZRHom ` R ) ` y ) = ( 0g ` R ) ) ) ) |
| 53 | 43 47 52 | 3imtr4d | |- ( ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( chr ` R ) || ( x x. y ) -> ( ( chr ` R ) || x \/ ( chr ` R ) || y ) ) ) |
| 54 | 53 | ralrimivva | |- ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) -> A. x e. ZZ A. y e. ZZ ( ( chr ` R ) || ( x x. y ) -> ( ( chr ` R ) || x \/ ( chr ` R ) || y ) ) ) |
| 55 | isprm6 | |- ( ( chr ` R ) e. Prime <-> ( ( chr ` R ) e. ( ZZ>= ` 2 ) /\ A. x e. ZZ A. y e. ZZ ( ( chr ` R ) || ( x x. y ) -> ( ( chr ` R ) || x \/ ( chr ` R ) || y ) ) ) ) |
|
| 56 | 20 54 55 | sylanbrc | |- ( ( R e. Domn /\ ( chr ` R ) =/= 0 ) -> ( chr ` R ) e. Prime ) |
| 57 | 56 | ex | |- ( R e. Domn -> ( ( chr ` R ) =/= 0 -> ( chr ` R ) e. Prime ) ) |
| 58 | 1 57 | biimtrrid | |- ( R e. Domn -> ( -. ( chr ` R ) = 0 -> ( chr ` R ) e. Prime ) ) |
| 59 | 58 | orrd | |- ( R e. Domn -> ( ( chr ` R ) = 0 \/ ( chr ` R ) e. Prime ) ) |