This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ ring homomorphism is zero only at multiples of the characteristic. (Contributed by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chrcl.c | |- C = ( chr ` R ) |
|
| chrid.l | |- L = ( ZRHom ` R ) |
||
| chrid.z | |- .0. = ( 0g ` R ) |
||
| Assertion | chrdvds | |- ( ( R e. Ring /\ N e. ZZ ) -> ( C || N <-> ( L ` N ) = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chrcl.c | |- C = ( chr ` R ) |
|
| 2 | chrid.l | |- L = ( ZRHom ` R ) |
|
| 3 | chrid.z | |- .0. = ( 0g ` R ) |
|
| 4 | eqid | |- ( od ` R ) = ( od ` R ) |
|
| 5 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 6 | 4 5 1 | chrval | |- ( ( od ` R ) ` ( 1r ` R ) ) = C |
| 7 | 6 | breq1i | |- ( ( ( od ` R ) ` ( 1r ` R ) ) || N <-> C || N ) |
| 8 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 9 | 8 | adantr | |- ( ( R e. Ring /\ N e. ZZ ) -> R e. Grp ) |
| 10 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 11 | 10 5 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 12 | 11 | adantr | |- ( ( R e. Ring /\ N e. ZZ ) -> ( 1r ` R ) e. ( Base ` R ) ) |
| 13 | simpr | |- ( ( R e. Ring /\ N e. ZZ ) -> N e. ZZ ) |
|
| 14 | eqid | |- ( .g ` R ) = ( .g ` R ) |
|
| 15 | 10 4 14 3 | oddvds | |- ( ( R e. Grp /\ ( 1r ` R ) e. ( Base ` R ) /\ N e. ZZ ) -> ( ( ( od ` R ) ` ( 1r ` R ) ) || N <-> ( N ( .g ` R ) ( 1r ` R ) ) = .0. ) ) |
| 16 | 9 12 13 15 | syl3anc | |- ( ( R e. Ring /\ N e. ZZ ) -> ( ( ( od ` R ) ` ( 1r ` R ) ) || N <-> ( N ( .g ` R ) ( 1r ` R ) ) = .0. ) ) |
| 17 | 7 16 | bitr3id | |- ( ( R e. Ring /\ N e. ZZ ) -> ( C || N <-> ( N ( .g ` R ) ( 1r ` R ) ) = .0. ) ) |
| 18 | 2 14 5 | zrhmulg | |- ( ( R e. Ring /\ N e. ZZ ) -> ( L ` N ) = ( N ( .g ` R ) ( 1r ` R ) ) ) |
| 19 | 18 | eqeq1d | |- ( ( R e. Ring /\ N e. ZZ ) -> ( ( L ` N ) = .0. <-> ( N ( .g ` R ) ( 1r ` R ) ) = .0. ) ) |
| 20 | 17 19 | bitr4d | |- ( ( R e. Ring /\ N e. ZZ ) -> ( C || N <-> ( L ` N ) = .0. ) ) |