This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property " F is a section of G " in a category of small categories (in a universe). (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcsect.c | |- C = ( CatCat ` U ) |
|
| catcsect.h | |- H = ( Hom ` C ) |
||
| catcsect.i | |- I = ( idFunc ` X ) |
||
| catcsect.s | |- S = ( Sect ` C ) |
||
| Assertion | catcsect | |- ( F ( X S Y ) G <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G o.func F ) = I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcsect.c | |- C = ( CatCat ` U ) |
|
| 2 | catcsect.h | |- H = ( Hom ` C ) |
|
| 3 | catcsect.i | |- I = ( idFunc ` X ) |
|
| 4 | catcsect.s | |- S = ( Sect ` C ) |
|
| 5 | id | |- ( F ( X S Y ) G -> F ( X S Y ) G ) |
|
| 6 | 4 5 | sectrcl | |- ( F ( X S Y ) G -> C e. Cat ) |
| 7 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 8 | 4 5 7 | sectrcl2 | |- ( F ( X S Y ) G -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
| 9 | 6 8 | jca | |- ( F ( X S Y ) G -> ( C e. Cat /\ ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) ) |
| 10 | simpl | |- ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) -> F e. ( X H Y ) ) |
|
| 11 | 1 2 10 | catcrcl | |- ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) -> U e. _V ) |
| 12 | 1 | catccat | |- ( U e. _V -> C e. Cat ) |
| 13 | 11 12 | syl | |- ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) -> C e. Cat ) |
| 14 | 1 2 10 7 | catcrcl2 | |- ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
| 15 | 13 14 | jca | |- ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) -> ( C e. Cat /\ ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) ) |
| 16 | 15 | 3adant3 | |- ( ( F e. ( X H Y ) /\ G e. ( Y H X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) -> ( C e. Cat /\ ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) ) |
| 17 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 18 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 19 | simpl | |- ( ( C e. Cat /\ ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) -> C e. Cat ) |
|
| 20 | simprl | |- ( ( C e. Cat /\ ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) -> X e. ( Base ` C ) ) |
|
| 21 | simprr | |- ( ( C e. Cat /\ ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) -> Y e. ( Base ` C ) ) |
|
| 22 | 7 2 17 18 4 19 20 21 | issect | |- ( ( C e. Cat /\ ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) -> ( F ( X S Y ) G <-> ( F e. ( X H Y ) /\ G e. ( Y H X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) ) |
| 23 | 9 16 22 | pm5.21nii | |- ( F ( X S Y ) G <-> ( F e. ( X H Y ) /\ G e. ( Y H X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) |
| 24 | df-3an | |- ( ( F e. ( X H Y ) /\ G e. ( Y H X ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) |
|
| 25 | 15 20 | syl | |- ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) -> X e. ( Base ` C ) ) |
| 26 | 15 21 | syl | |- ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) -> Y e. ( Base ` C ) ) |
| 27 | 1 2 10 | elcatchom | |- ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) -> F e. ( X Func Y ) ) |
| 28 | simpr | |- ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) -> G e. ( Y H X ) ) |
|
| 29 | 1 2 28 | elcatchom | |- ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) -> G e. ( Y Func X ) ) |
| 30 | 1 7 11 17 25 26 25 27 29 | catcco | |- ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) -> ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( G o.func F ) ) |
| 31 | 1 7 18 3 11 25 | catcid | |- ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) -> ( ( Id ` C ) ` X ) = I ) |
| 32 | 30 31 | eqeq12d | |- ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) -> ( ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) <-> ( G o.func F ) = I ) ) |
| 33 | 32 | pm5.32i | |- ( ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G o.func F ) = I ) ) |
| 34 | 23 24 33 | 3bitri | |- ( F ( X S Y ) G <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G o.func F ) = I ) ) |