This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property " F is an inverse of G " in a category of small categories (in a universe). (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcinv.c | |- C = ( CatCat ` U ) |
|
| catcinv.n | |- N = ( Inv ` C ) |
||
| catcinv.h | |- H = ( Hom ` C ) |
||
| catcinv.i | |- I = ( idFunc ` X ) |
||
| catcinv.j | |- J = ( idFunc ` Y ) |
||
| Assertion | catcinv | |- ( F ( X N Y ) G <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( ( G o.func F ) = I /\ ( F o.func G ) = J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcinv.c | |- C = ( CatCat ` U ) |
|
| 2 | catcinv.n | |- N = ( Inv ` C ) |
|
| 3 | catcinv.h | |- H = ( Hom ` C ) |
|
| 4 | catcinv.i | |- I = ( idFunc ` X ) |
|
| 5 | catcinv.j | |- J = ( idFunc ` Y ) |
|
| 6 | eqid | |- ( Sect ` C ) = ( Sect ` C ) |
|
| 7 | 1 3 4 6 | catcsect | |- ( F ( X ( Sect ` C ) Y ) G <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G o.func F ) = I ) ) |
| 8 | 1 3 5 6 | catcsect | |- ( G ( Y ( Sect ` C ) X ) F <-> ( ( G e. ( Y H X ) /\ F e. ( X H Y ) ) /\ ( F o.func G ) = J ) ) |
| 9 | ancom | |- ( ( G e. ( Y H X ) /\ F e. ( X H Y ) ) <-> ( F e. ( X H Y ) /\ G e. ( Y H X ) ) ) |
|
| 10 | 8 9 | bianbi | |- ( G ( Y ( Sect ` C ) X ) F <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( F o.func G ) = J ) ) |
| 11 | 7 10 | anbi12i | |- ( ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) <-> ( ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G o.func F ) = I ) /\ ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( F o.func G ) = J ) ) ) |
| 12 | 2 6 | isinv2 | |- ( F ( X N Y ) G <-> ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) ) |
| 13 | anandi | |- ( ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( ( G o.func F ) = I /\ ( F o.func G ) = J ) ) <-> ( ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G o.func F ) = I ) /\ ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( F o.func G ) = J ) ) ) |
|
| 14 | 11 12 13 | 3bitr4i | |- ( F ( X N Y ) G <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( ( G o.func F ) = I /\ ( F o.func G ) = J ) ) ) |