This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the category of categories (in a universe) (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcrcl.c | |- C = ( CatCat ` U ) |
|
| catcrcl.h | |- H = ( Hom ` C ) |
||
| catcrcl.f | |- ( ph -> F e. ( X H Y ) ) |
||
| catcrcl2.b | |- B = ( Base ` C ) |
||
| Assertion | catcrcl2 | |- ( ph -> ( X e. B /\ Y e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcrcl.c | |- C = ( CatCat ` U ) |
|
| 2 | catcrcl.h | |- H = ( Hom ` C ) |
|
| 3 | catcrcl.f | |- ( ph -> F e. ( X H Y ) ) |
|
| 4 | catcrcl2.b | |- B = ( Base ` C ) |
|
| 5 | 1 2 3 | catcrcl | |- ( ph -> U e. _V ) |
| 6 | 1 4 5 2 | catchomfval | |- ( ph -> H = ( x e. B , y e. B |-> ( x Func y ) ) ) |
| 7 | 6 | oveqd | |- ( ph -> ( X H Y ) = ( X ( x e. B , y e. B |-> ( x Func y ) ) Y ) ) |
| 8 | 3 7 | eleqtrd | |- ( ph -> F e. ( X ( x e. B , y e. B |-> ( x Func y ) ) Y ) ) |
| 9 | eqid | |- ( x e. B , y e. B |-> ( x Func y ) ) = ( x e. B , y e. B |-> ( x Func y ) ) |
|
| 10 | 9 | elmpocl | |- ( F e. ( X ( x e. B , y e. B |-> ( x Func y ) ) Y ) -> ( X e. B /\ Y e. B ) ) |
| 11 | 8 10 | syl | |- ( ph -> ( X e. B /\ Y e. B ) ) |