This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the category of categories (in a universe) (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcrcl.c | |- C = ( CatCat ` U ) |
|
| catcrcl.h | |- H = ( Hom ` C ) |
||
| catcrcl.f | |- ( ph -> F e. ( X H Y ) ) |
||
| Assertion | catcrcl | |- ( ph -> U e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcrcl.c | |- C = ( CatCat ` U ) |
|
| 2 | catcrcl.h | |- H = ( Hom ` C ) |
|
| 3 | catcrcl.f | |- ( ph -> F e. ( X H Y ) ) |
|
| 4 | elfvne0 | |- ( F e. ( H ` <. X , Y >. ) -> H =/= (/) ) |
|
| 5 | df-ov | |- ( X H Y ) = ( H ` <. X , Y >. ) |
|
| 6 | 4 5 | eleq2s | |- ( F e. ( X H Y ) -> H =/= (/) ) |
| 7 | fvprc | |- ( -. U e. _V -> ( CatCat ` U ) = (/) ) |
|
| 8 | 1 7 | eqtrid | |- ( -. U e. _V -> C = (/) ) |
| 9 | fveq2 | |- ( C = (/) -> ( Hom ` C ) = ( Hom ` (/) ) ) |
|
| 10 | homid | |- Hom = Slot ( Hom ` ndx ) |
|
| 11 | 10 | str0 | |- (/) = ( Hom ` (/) ) |
| 12 | 9 2 11 | 3eqtr4g | |- ( C = (/) -> H = (/) ) |
| 13 | 8 12 | syl | |- ( -. U e. _V -> H = (/) ) |
| 14 | 13 | necon1ai | |- ( H =/= (/) -> U e. _V ) |
| 15 | 3 6 14 | 3syl | |- ( ph -> U e. _V ) |