This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for section relations. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sectrcl.s | |- S = ( Sect ` C ) |
|
| sectrcl.f | |- ( ph -> F ( X S Y ) G ) |
||
| Assertion | sectrcl | |- ( ph -> C e. Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectrcl.s | |- S = ( Sect ` C ) |
|
| 2 | sectrcl.f | |- ( ph -> F ( X S Y ) G ) |
|
| 3 | df-br | |- ( F ( X S Y ) G <-> <. F , G >. e. ( X S Y ) ) |
|
| 4 | df-ov | |- ( X S Y ) = ( S ` <. X , Y >. ) |
|
| 5 | 4 | eleq2i | |- ( <. F , G >. e. ( X S Y ) <-> <. F , G >. e. ( S ` <. X , Y >. ) ) |
| 6 | 3 5 | bitri | |- ( F ( X S Y ) G <-> <. F , G >. e. ( S ` <. X , Y >. ) ) |
| 7 | elfvne0 | |- ( <. F , G >. e. ( S ` <. X , Y >. ) -> S =/= (/) ) |
|
| 8 | 6 7 | sylbi | |- ( F ( X S Y ) G -> S =/= (/) ) |
| 9 | 1 | neeq1i | |- ( S =/= (/) <-> ( Sect ` C ) =/= (/) ) |
| 10 | n0 | |- ( ( Sect ` C ) =/= (/) <-> E. x x e. ( Sect ` C ) ) |
|
| 11 | 9 10 | bitri | |- ( S =/= (/) <-> E. x x e. ( Sect ` C ) ) |
| 12 | 8 11 | sylib | |- ( F ( X S Y ) G -> E. x x e. ( Sect ` C ) ) |
| 13 | df-sect | |- Sect = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) ) |
|
| 14 | 13 | mptrcl | |- ( x e. ( Sect ` C ) -> C e. Cat ) |
| 15 | 14 | exlimiv | |- ( E. x x e. ( Sect ` C ) -> C e. Cat ) |
| 16 | 2 12 15 | 3syl | |- ( ph -> C e. Cat ) |