This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property " F is a section of G " in a category of small categories (in a universe). (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcsect.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| catcsect.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| catcsect.i | ⊢ 𝐼 = ( idfunc ‘ 𝑋 ) | ||
| catcsect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| Assertion | catcsect | ⊢ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ∘func 𝐹 ) = 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcsect.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | catcsect.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | catcsect.i | ⊢ 𝐼 = ( idfunc ‘ 𝑋 ) | |
| 4 | catcsect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 5 | id | ⊢ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 → 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) | |
| 6 | 4 5 | sectrcl | ⊢ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 → 𝐶 ∈ Cat ) |
| 7 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 8 | 4 5 7 | sectrcl2 | ⊢ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
| 9 | 6 8 | jca | ⊢ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 → ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) ) |
| 10 | simpl | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 11 | 1 2 10 | catcrcl | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝑈 ∈ V ) |
| 12 | 1 | catccat | ⊢ ( 𝑈 ∈ V → 𝐶 ∈ Cat ) |
| 13 | 11 12 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝐶 ∈ Cat ) |
| 14 | 1 2 10 7 | catcrcl2 | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
| 15 | 13 14 | jca | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) ) |
| 16 | 15 | 3adant3 | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) → ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) ) |
| 17 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 18 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 19 | simpl | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) | |
| 20 | simprl | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) | |
| 21 | simprr | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑌 ∈ ( Base ‘ 𝐶 ) ) | |
| 22 | 7 2 17 18 4 19 20 21 | issect | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
| 23 | 9 16 22 | pm5.21nii | ⊢ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 24 | df-3an | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) | |
| 25 | 15 20 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 26 | 15 21 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 27 | 1 2 10 | elcatchom | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝐹 ∈ ( 𝑋 Func 𝑌 ) ) |
| 28 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) | |
| 29 | 1 2 28 | elcatchom | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝐺 ∈ ( 𝑌 Func 𝑋 ) ) |
| 30 | 1 7 11 17 25 26 25 27 29 | catcco | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 𝐺 ∘func 𝐹 ) ) |
| 31 | 1 7 18 3 11 25 | catcid | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) = 𝐼 ) |
| 32 | 30 31 | eqeq12d | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ↔ ( 𝐺 ∘func 𝐹 ) = 𝐼 ) ) |
| 33 | 32 | pm5.32i | ⊢ ( ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ∘func 𝐹 ) = 𝐼 ) ) |
| 34 | 23 24 33 | 3bitri | ⊢ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ∘func 𝐹 ) = 𝐼 ) ) |