This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A morphism of the category of categories (in a universe) is a functor. See df-catc for the definition of the category Cat, which consists of all categories in the universe u (i.e., " u -small categories", see Definition 3.44. of Adamek p. 39), with functors as the morphisms ( catchom ). (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcrcl.c | |- C = ( CatCat ` U ) |
|
| catcrcl.h | |- H = ( Hom ` C ) |
||
| catcrcl.f | |- ( ph -> F e. ( X H Y ) ) |
||
| Assertion | elcatchom | |- ( ph -> F e. ( X Func Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcrcl.c | |- C = ( CatCat ` U ) |
|
| 2 | catcrcl.h | |- H = ( Hom ` C ) |
|
| 3 | catcrcl.f | |- ( ph -> F e. ( X H Y ) ) |
|
| 4 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 5 | 1 2 3 | catcrcl | |- ( ph -> U e. _V ) |
| 6 | 1 2 3 4 | catcrcl2 | |- ( ph -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
| 7 | 6 | simpld | |- ( ph -> X e. ( Base ` C ) ) |
| 8 | 6 | simprd | |- ( ph -> Y e. ( Base ` C ) ) |
| 9 | 1 4 5 2 7 8 | catchom | |- ( ph -> ( X H Y ) = ( X Func Y ) ) |
| 10 | 3 9 | eleqtrd | |- ( ph -> F e. ( X Func Y ) ) |