This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for section relations. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sectrcl.s | |- S = ( Sect ` C ) |
|
| sectrcl.f | |- ( ph -> F ( X S Y ) G ) |
||
| sectrcl2.b | |- B = ( Base ` C ) |
||
| Assertion | sectrcl2 | |- ( ph -> ( X e. B /\ Y e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectrcl.s | |- S = ( Sect ` C ) |
|
| 2 | sectrcl.f | |- ( ph -> F ( X S Y ) G ) |
|
| 3 | sectrcl2.b | |- B = ( Base ` C ) |
|
| 4 | df-br | |- ( F ( X S Y ) G <-> <. F , G >. e. ( X S Y ) ) |
|
| 5 | 2 4 | sylib | |- ( ph -> <. F , G >. e. ( X S Y ) ) |
| 6 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 7 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 8 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 9 | 1 2 | sectrcl | |- ( ph -> C e. Cat ) |
| 10 | 3 6 7 8 1 9 | sectffval | |- ( ph -> S = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } ) ) |
| 11 | 10 | oveqd | |- ( ph -> ( X S Y ) = ( X ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } ) Y ) ) |
| 12 | 5 11 | eleqtrd | |- ( ph -> <. F , G >. e. ( X ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } ) Y ) ) |
| 13 | eqid | |- ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } ) = ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } ) |
|
| 14 | 13 | elmpocl | |- ( <. F , G >. e. ( X ( x e. B , y e. B |-> { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } ) Y ) -> ( X e. B /\ Y e. B ) ) |
| 15 | 12 14 | syl | |- ( ph -> ( X e. B /\ Y e. B ) ) |