This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnfp1 . (Contributed by Mario Carneiro, 20-Jun-2015) (Revised by AV, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| cantnfp1.g | |- ( ph -> G e. S ) |
||
| cantnfp1.x | |- ( ph -> X e. B ) |
||
| cantnfp1.y | |- ( ph -> Y e. A ) |
||
| cantnfp1.s | |- ( ph -> ( G supp (/) ) C_ X ) |
||
| cantnfp1.f | |- F = ( t e. B |-> if ( t = X , Y , ( G ` t ) ) ) |
||
| Assertion | cantnfp1lem1 | |- ( ph -> F e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | cantnfp1.g | |- ( ph -> G e. S ) |
|
| 5 | cantnfp1.x | |- ( ph -> X e. B ) |
|
| 6 | cantnfp1.y | |- ( ph -> Y e. A ) |
|
| 7 | cantnfp1.s | |- ( ph -> ( G supp (/) ) C_ X ) |
|
| 8 | cantnfp1.f | |- F = ( t e. B |-> if ( t = X , Y , ( G ` t ) ) ) |
|
| 9 | 6 | adantr | |- ( ( ph /\ t e. B ) -> Y e. A ) |
| 10 | 1 2 3 | cantnfs | |- ( ph -> ( G e. S <-> ( G : B --> A /\ G finSupp (/) ) ) ) |
| 11 | 4 10 | mpbid | |- ( ph -> ( G : B --> A /\ G finSupp (/) ) ) |
| 12 | 11 | simpld | |- ( ph -> G : B --> A ) |
| 13 | 12 | ffvelcdmda | |- ( ( ph /\ t e. B ) -> ( G ` t ) e. A ) |
| 14 | 9 13 | ifcld | |- ( ( ph /\ t e. B ) -> if ( t = X , Y , ( G ` t ) ) e. A ) |
| 15 | 14 8 | fmptd | |- ( ph -> F : B --> A ) |
| 16 | 11 | simprd | |- ( ph -> G finSupp (/) ) |
| 17 | 16 | fsuppimpd | |- ( ph -> ( G supp (/) ) e. Fin ) |
| 18 | snfi | |- { X } e. Fin |
|
| 19 | unfi | |- ( ( ( G supp (/) ) e. Fin /\ { X } e. Fin ) -> ( ( G supp (/) ) u. { X } ) e. Fin ) |
|
| 20 | 17 18 19 | sylancl | |- ( ph -> ( ( G supp (/) ) u. { X } ) e. Fin ) |
| 21 | eqeq1 | |- ( t = k -> ( t = X <-> k = X ) ) |
|
| 22 | fveq2 | |- ( t = k -> ( G ` t ) = ( G ` k ) ) |
|
| 23 | 21 22 | ifbieq2d | |- ( t = k -> if ( t = X , Y , ( G ` t ) ) = if ( k = X , Y , ( G ` k ) ) ) |
| 24 | eldifi | |- ( k e. ( B \ ( ( G supp (/) ) u. { X } ) ) -> k e. B ) |
|
| 25 | 24 | adantl | |- ( ( ph /\ k e. ( B \ ( ( G supp (/) ) u. { X } ) ) ) -> k e. B ) |
| 26 | 6 | adantr | |- ( ( ph /\ k e. ( B \ ( ( G supp (/) ) u. { X } ) ) ) -> Y e. A ) |
| 27 | fvex | |- ( G ` k ) e. _V |
|
| 28 | ifexg | |- ( ( Y e. A /\ ( G ` k ) e. _V ) -> if ( k = X , Y , ( G ` k ) ) e. _V ) |
|
| 29 | 26 27 28 | sylancl | |- ( ( ph /\ k e. ( B \ ( ( G supp (/) ) u. { X } ) ) ) -> if ( k = X , Y , ( G ` k ) ) e. _V ) |
| 30 | 8 23 25 29 | fvmptd3 | |- ( ( ph /\ k e. ( B \ ( ( G supp (/) ) u. { X } ) ) ) -> ( F ` k ) = if ( k = X , Y , ( G ` k ) ) ) |
| 31 | eldifn | |- ( k e. ( B \ ( ( G supp (/) ) u. { X } ) ) -> -. k e. ( ( G supp (/) ) u. { X } ) ) |
|
| 32 | 31 | adantl | |- ( ( ph /\ k e. ( B \ ( ( G supp (/) ) u. { X } ) ) ) -> -. k e. ( ( G supp (/) ) u. { X } ) ) |
| 33 | velsn | |- ( k e. { X } <-> k = X ) |
|
| 34 | elun2 | |- ( k e. { X } -> k e. ( ( G supp (/) ) u. { X } ) ) |
|
| 35 | 33 34 | sylbir | |- ( k = X -> k e. ( ( G supp (/) ) u. { X } ) ) |
| 36 | 32 35 | nsyl | |- ( ( ph /\ k e. ( B \ ( ( G supp (/) ) u. { X } ) ) ) -> -. k = X ) |
| 37 | 36 | iffalsed | |- ( ( ph /\ k e. ( B \ ( ( G supp (/) ) u. { X } ) ) ) -> if ( k = X , Y , ( G ` k ) ) = ( G ` k ) ) |
| 38 | ssun1 | |- ( G supp (/) ) C_ ( ( G supp (/) ) u. { X } ) |
|
| 39 | sscon | |- ( ( G supp (/) ) C_ ( ( G supp (/) ) u. { X } ) -> ( B \ ( ( G supp (/) ) u. { X } ) ) C_ ( B \ ( G supp (/) ) ) ) |
|
| 40 | 38 39 | ax-mp | |- ( B \ ( ( G supp (/) ) u. { X } ) ) C_ ( B \ ( G supp (/) ) ) |
| 41 | 40 | sseli | |- ( k e. ( B \ ( ( G supp (/) ) u. { X } ) ) -> k e. ( B \ ( G supp (/) ) ) ) |
| 42 | ssidd | |- ( ph -> ( G supp (/) ) C_ ( G supp (/) ) ) |
|
| 43 | 0ex | |- (/) e. _V |
|
| 44 | 43 | a1i | |- ( ph -> (/) e. _V ) |
| 45 | 12 42 3 44 | suppssr | |- ( ( ph /\ k e. ( B \ ( G supp (/) ) ) ) -> ( G ` k ) = (/) ) |
| 46 | 41 45 | sylan2 | |- ( ( ph /\ k e. ( B \ ( ( G supp (/) ) u. { X } ) ) ) -> ( G ` k ) = (/) ) |
| 47 | 30 37 46 | 3eqtrd | |- ( ( ph /\ k e. ( B \ ( ( G supp (/) ) u. { X } ) ) ) -> ( F ` k ) = (/) ) |
| 48 | 15 47 | suppss | |- ( ph -> ( F supp (/) ) C_ ( ( G supp (/) ) u. { X } ) ) |
| 49 | 20 48 | ssfid | |- ( ph -> ( F supp (/) ) e. Fin ) |
| 50 | 8 | funmpt2 | |- Fun F |
| 51 | mptexg | |- ( B e. On -> ( t e. B |-> if ( t = X , Y , ( G ` t ) ) ) e. _V ) |
|
| 52 | 8 51 | eqeltrid | |- ( B e. On -> F e. _V ) |
| 53 | 3 52 | syl | |- ( ph -> F e. _V ) |
| 54 | funisfsupp | |- ( ( Fun F /\ F e. _V /\ (/) e. _V ) -> ( F finSupp (/) <-> ( F supp (/) ) e. Fin ) ) |
|
| 55 | 50 53 44 54 | mp3an2i | |- ( ph -> ( F finSupp (/) <-> ( F supp (/) ) e. Fin ) ) |
| 56 | 49 55 | mpbird | |- ( ph -> F finSupp (/) ) |
| 57 | 1 2 3 | cantnfs | |- ( ph -> ( F e. S <-> ( F : B --> A /\ F finSupp (/) ) ) ) |
| 58 | 15 56 57 | mpbir2and | |- ( ph -> F e. S ) |