This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infinity ball in a standard metric is just the whole space. (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blpnf | |- ( ( D e. ( Met ` X ) /\ P e. X ) -> ( P ( ball ` D ) +oo ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 2 | xblpnf | |- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( x e. ( P ( ball ` D ) +oo ) <-> ( x e. X /\ ( P D x ) e. RR ) ) ) |
|
| 3 | 1 2 | sylan | |- ( ( D e. ( Met ` X ) /\ P e. X ) -> ( x e. ( P ( ball ` D ) +oo ) <-> ( x e. X /\ ( P D x ) e. RR ) ) ) |
| 4 | metcl | |- ( ( D e. ( Met ` X ) /\ P e. X /\ x e. X ) -> ( P D x ) e. RR ) |
|
| 5 | 4 | 3expia | |- ( ( D e. ( Met ` X ) /\ P e. X ) -> ( x e. X -> ( P D x ) e. RR ) ) |
| 6 | 5 | pm4.71d | |- ( ( D e. ( Met ` X ) /\ P e. X ) -> ( x e. X <-> ( x e. X /\ ( P D x ) e. RR ) ) ) |
| 7 | 3 6 | bitr4d | |- ( ( D e. ( Met ` X ) /\ P e. X ) -> ( x e. ( P ( ball ` D ) +oo ) <-> x e. X ) ) |
| 8 | 7 | eqrdv | |- ( ( D e. ( Met ` X ) /\ P e. X ) -> ( P ( ball ` D ) +oo ) = X ) |