This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for binom (binomial theorem). Inductive step. (Contributed by NM, 6-Dec-2005) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | binomlem.1 | |- ( ph -> A e. CC ) |
|
| binomlem.2 | |- ( ph -> B e. CC ) |
||
| binomlem.3 | |- ( ph -> N e. NN0 ) |
||
| binomlem.4 | |- ( ps -> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |
||
| Assertion | binomlem | |- ( ( ph /\ ps ) -> ( ( A + B ) ^ ( N + 1 ) ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N + 1 ) _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | binomlem.1 | |- ( ph -> A e. CC ) |
|
| 2 | binomlem.2 | |- ( ph -> B e. CC ) |
|
| 3 | binomlem.3 | |- ( ph -> N e. NN0 ) |
|
| 4 | binomlem.4 | |- ( ps -> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |
|
| 5 | 4 | adantl | |- ( ( ph /\ ps ) -> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |
| 6 | 5 | oveq1d | |- ( ( ph /\ ps ) -> ( ( ( A + B ) ^ N ) x. A ) = ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. A ) ) |
| 7 | fzfid | |- ( ph -> ( 0 ... N ) e. Fin ) |
|
| 8 | fzelp1 | |- ( k e. ( 0 ... N ) -> k e. ( 0 ... ( N + 1 ) ) ) |
|
| 9 | elfzelz | |- ( k e. ( 0 ... ( N + 1 ) ) -> k e. ZZ ) |
|
| 10 | bccl | |- ( ( N e. NN0 /\ k e. ZZ ) -> ( N _C k ) e. NN0 ) |
|
| 11 | 3 9 10 | syl2an | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N _C k ) e. NN0 ) |
| 12 | 11 | nn0cnd | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N _C k ) e. CC ) |
| 13 | 8 12 | sylan2 | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. CC ) |
| 14 | fznn0sub | |- ( k e. ( 0 ... N ) -> ( N - k ) e. NN0 ) |
|
| 15 | expcl | |- ( ( A e. CC /\ ( N - k ) e. NN0 ) -> ( A ^ ( N - k ) ) e. CC ) |
|
| 16 | 1 14 15 | syl2an | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( A ^ ( N - k ) ) e. CC ) |
| 17 | elfznn0 | |- ( k e. ( 0 ... ( N + 1 ) ) -> k e. NN0 ) |
|
| 18 | expcl | |- ( ( B e. CC /\ k e. NN0 ) -> ( B ^ k ) e. CC ) |
|
| 19 | 2 17 18 | syl2an | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( B ^ k ) e. CC ) |
| 20 | 8 19 | sylan2 | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( B ^ k ) e. CC ) |
| 21 | 16 20 | mulcld | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) e. CC ) |
| 22 | 13 21 | mulcld | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) e. CC ) |
| 23 | 7 1 22 | fsummulc1 | |- ( ph -> ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. A ) = sum_ k e. ( 0 ... N ) ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. A ) ) |
| 24 | 1 | adantr | |- ( ( ph /\ k e. ( 0 ... N ) ) -> A e. CC ) |
| 25 | 13 21 24 | mulassd | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. A ) = ( ( N _C k ) x. ( ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) x. A ) ) ) |
| 26 | 3 | nn0cnd | |- ( ph -> N e. CC ) |
| 27 | 26 | adantr | |- ( ( ph /\ k e. ( 0 ... N ) ) -> N e. CC ) |
| 28 | 1cnd | |- ( ( ph /\ k e. ( 0 ... N ) ) -> 1 e. CC ) |
|
| 29 | elfzelz | |- ( k e. ( 0 ... N ) -> k e. ZZ ) |
|
| 30 | 29 | adantl | |- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. ZZ ) |
| 31 | 30 | zcnd | |- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. CC ) |
| 32 | 27 28 31 | addsubd | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( N + 1 ) - k ) = ( ( N - k ) + 1 ) ) |
| 33 | 32 | oveq2d | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( A ^ ( ( N + 1 ) - k ) ) = ( A ^ ( ( N - k ) + 1 ) ) ) |
| 34 | expp1 | |- ( ( A e. CC /\ ( N - k ) e. NN0 ) -> ( A ^ ( ( N - k ) + 1 ) ) = ( ( A ^ ( N - k ) ) x. A ) ) |
|
| 35 | 1 14 34 | syl2an | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( A ^ ( ( N - k ) + 1 ) ) = ( ( A ^ ( N - k ) ) x. A ) ) |
| 36 | 33 35 | eqtrd | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( A ^ ( ( N + 1 ) - k ) ) = ( ( A ^ ( N - k ) ) x. A ) ) |
| 37 | 36 | oveq1d | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) = ( ( ( A ^ ( N - k ) ) x. A ) x. ( B ^ k ) ) ) |
| 38 | 16 24 20 | mul32d | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( A ^ ( N - k ) ) x. A ) x. ( B ^ k ) ) = ( ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) x. A ) ) |
| 39 | 37 38 | eqtrd | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) = ( ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) x. A ) ) |
| 40 | 39 | oveq2d | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = ( ( N _C k ) x. ( ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) x. A ) ) ) |
| 41 | 25 40 | eqtr4d | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. A ) = ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 42 | 41 | sumeq2dv | |- ( ph -> sum_ k e. ( 0 ... N ) ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. A ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 43 | fzssp1 | |- ( 0 ... N ) C_ ( 0 ... ( N + 1 ) ) |
|
| 44 | 43 | a1i | |- ( ph -> ( 0 ... N ) C_ ( 0 ... ( N + 1 ) ) ) |
| 45 | fznn0sub | |- ( k e. ( 0 ... ( N + 1 ) ) -> ( ( N + 1 ) - k ) e. NN0 ) |
|
| 46 | expcl | |- ( ( A e. CC /\ ( ( N + 1 ) - k ) e. NN0 ) -> ( A ^ ( ( N + 1 ) - k ) ) e. CC ) |
|
| 47 | 1 45 46 | syl2an | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( A ^ ( ( N + 1 ) - k ) ) e. CC ) |
| 48 | 47 19 | mulcld | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) e. CC ) |
| 49 | 12 48 | mulcld | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) e. CC ) |
| 50 | 8 49 | sylan2 | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) e. CC ) |
| 51 | 3 | adantr | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) ) -> N e. NN0 ) |
| 52 | eldifi | |- ( k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) -> k e. ( 0 ... ( N + 1 ) ) ) |
|
| 53 | 52 9 | syl | |- ( k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) -> k e. ZZ ) |
| 54 | 53 | adantl | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) ) -> k e. ZZ ) |
| 55 | eldifn | |- ( k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) -> -. k e. ( 0 ... N ) ) |
|
| 56 | 55 | adantl | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) ) -> -. k e. ( 0 ... N ) ) |
| 57 | bcval3 | |- ( ( N e. NN0 /\ k e. ZZ /\ -. k e. ( 0 ... N ) ) -> ( N _C k ) = 0 ) |
|
| 58 | 51 54 56 57 | syl3anc | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) ) -> ( N _C k ) = 0 ) |
| 59 | 58 | oveq1d | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) ) -> ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = ( 0 x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 60 | 48 | mul02d | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( 0 x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = 0 ) |
| 61 | 52 60 | sylan2 | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) ) -> ( 0 x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = 0 ) |
| 62 | 59 61 | eqtrd | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 0 ... N ) ) ) -> ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = 0 ) |
| 63 | fzssuz | |- ( 0 ... ( N + 1 ) ) C_ ( ZZ>= ` 0 ) |
|
| 64 | 63 | a1i | |- ( ph -> ( 0 ... ( N + 1 ) ) C_ ( ZZ>= ` 0 ) ) |
| 65 | 44 50 62 64 | sumss | |- ( ph -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 66 | 23 42 65 | 3eqtrd | |- ( ph -> ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. A ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 67 | 66 | adantr | |- ( ( ph /\ ps ) -> ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. A ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 68 | 6 67 | eqtrd | |- ( ( ph /\ ps ) -> ( ( ( A + B ) ^ N ) x. A ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 69 | 4 | oveq1d | |- ( ps -> ( ( ( A + B ) ^ N ) x. B ) = ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. B ) ) |
| 70 | 7 2 22 | fsummulc1 | |- ( ph -> ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. B ) = sum_ k e. ( 0 ... N ) ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. B ) ) |
| 71 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 72 | 0z | |- 0 e. ZZ |
|
| 73 | 72 | a1i | |- ( ph -> 0 e. ZZ ) |
| 74 | 3 | nn0zd | |- ( ph -> N e. ZZ ) |
| 75 | 2 | adantr | |- ( ( ph /\ k e. ( 0 ... N ) ) -> B e. CC ) |
| 76 | 22 75 | mulcld | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. B ) e. CC ) |
| 77 | oveq2 | |- ( k = ( j - 1 ) -> ( N _C k ) = ( N _C ( j - 1 ) ) ) |
|
| 78 | oveq2 | |- ( k = ( j - 1 ) -> ( N - k ) = ( N - ( j - 1 ) ) ) |
|
| 79 | 78 | oveq2d | |- ( k = ( j - 1 ) -> ( A ^ ( N - k ) ) = ( A ^ ( N - ( j - 1 ) ) ) ) |
| 80 | oveq2 | |- ( k = ( j - 1 ) -> ( B ^ k ) = ( B ^ ( j - 1 ) ) ) |
|
| 81 | 79 80 | oveq12d | |- ( k = ( j - 1 ) -> ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) = ( ( A ^ ( N - ( j - 1 ) ) ) x. ( B ^ ( j - 1 ) ) ) ) |
| 82 | 77 81 | oveq12d | |- ( k = ( j - 1 ) -> ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) = ( ( N _C ( j - 1 ) ) x. ( ( A ^ ( N - ( j - 1 ) ) ) x. ( B ^ ( j - 1 ) ) ) ) ) |
| 83 | 82 | oveq1d | |- ( k = ( j - 1 ) -> ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. B ) = ( ( ( N _C ( j - 1 ) ) x. ( ( A ^ ( N - ( j - 1 ) ) ) x. ( B ^ ( j - 1 ) ) ) ) x. B ) ) |
| 84 | 71 73 74 76 83 | fsumshft | |- ( ph -> sum_ k e. ( 0 ... N ) ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. B ) = sum_ j e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( N _C ( j - 1 ) ) x. ( ( A ^ ( N - ( j - 1 ) ) ) x. ( B ^ ( j - 1 ) ) ) ) x. B ) ) |
| 85 | oveq1 | |- ( j = k -> ( j - 1 ) = ( k - 1 ) ) |
|
| 86 | 85 | oveq2d | |- ( j = k -> ( N _C ( j - 1 ) ) = ( N _C ( k - 1 ) ) ) |
| 87 | 85 | oveq2d | |- ( j = k -> ( N - ( j - 1 ) ) = ( N - ( k - 1 ) ) ) |
| 88 | 87 | oveq2d | |- ( j = k -> ( A ^ ( N - ( j - 1 ) ) ) = ( A ^ ( N - ( k - 1 ) ) ) ) |
| 89 | 85 | oveq2d | |- ( j = k -> ( B ^ ( j - 1 ) ) = ( B ^ ( k - 1 ) ) ) |
| 90 | 88 89 | oveq12d | |- ( j = k -> ( ( A ^ ( N - ( j - 1 ) ) ) x. ( B ^ ( j - 1 ) ) ) = ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) ) |
| 91 | 86 90 | oveq12d | |- ( j = k -> ( ( N _C ( j - 1 ) ) x. ( ( A ^ ( N - ( j - 1 ) ) ) x. ( B ^ ( j - 1 ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) ) ) |
| 92 | 91 | oveq1d | |- ( j = k -> ( ( ( N _C ( j - 1 ) ) x. ( ( A ^ ( N - ( j - 1 ) ) ) x. ( B ^ ( j - 1 ) ) ) ) x. B ) = ( ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) ) x. B ) ) |
| 93 | 92 | cbvsumv | |- sum_ j e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( N _C ( j - 1 ) ) x. ( ( A ^ ( N - ( j - 1 ) ) ) x. ( B ^ ( j - 1 ) ) ) ) x. B ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) ) x. B ) |
| 94 | 84 93 | eqtrdi | |- ( ph -> sum_ k e. ( 0 ... N ) ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. B ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) ) x. B ) ) |
| 95 | 26 | adantr | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> N e. CC ) |
| 96 | elfzelz | |- ( k e. ( ( 0 + 1 ) ... ( N + 1 ) ) -> k e. ZZ ) |
|
| 97 | 96 | adantl | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> k e. ZZ ) |
| 98 | 97 | zcnd | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> k e. CC ) |
| 99 | 1cnd | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> 1 e. CC ) |
|
| 100 | 95 98 99 | subsub3d | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( N - ( k - 1 ) ) = ( ( N + 1 ) - k ) ) |
| 101 | 100 | oveq2d | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( A ^ ( N - ( k - 1 ) ) ) = ( A ^ ( ( N + 1 ) - k ) ) ) |
| 102 | 101 | oveq1d | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) = ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ ( k - 1 ) ) ) ) |
| 103 | 102 | oveq2d | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ ( k - 1 ) ) ) ) ) |
| 104 | 103 | oveq1d | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) ) x. B ) = ( ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ ( k - 1 ) ) ) ) x. B ) ) |
| 105 | fzp1ss | |- ( 0 e. ZZ -> ( ( 0 + 1 ) ... ( N + 1 ) ) C_ ( 0 ... ( N + 1 ) ) ) |
|
| 106 | 72 105 | ax-mp | |- ( ( 0 + 1 ) ... ( N + 1 ) ) C_ ( 0 ... ( N + 1 ) ) |
| 107 | 106 | sseli | |- ( k e. ( ( 0 + 1 ) ... ( N + 1 ) ) -> k e. ( 0 ... ( N + 1 ) ) ) |
| 108 | 9 | adantl | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> k e. ZZ ) |
| 109 | peano2zm | |- ( k e. ZZ -> ( k - 1 ) e. ZZ ) |
|
| 110 | 108 109 | syl | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( k - 1 ) e. ZZ ) |
| 111 | bccl | |- ( ( N e. NN0 /\ ( k - 1 ) e. ZZ ) -> ( N _C ( k - 1 ) ) e. NN0 ) |
|
| 112 | 3 110 111 | syl2an2r | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N _C ( k - 1 ) ) e. NN0 ) |
| 113 | 112 | nn0cnd | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N _C ( k - 1 ) ) e. CC ) |
| 114 | 107 113 | sylan2 | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( N _C ( k - 1 ) ) e. CC ) |
| 115 | 107 47 | sylan2 | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( A ^ ( ( N + 1 ) - k ) ) e. CC ) |
| 116 | 2 | adantr | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> B e. CC ) |
| 117 | elfznn | |- ( k e. ( 1 ... ( N + 1 ) ) -> k e. NN ) |
|
| 118 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 119 | 118 | oveq1i | |- ( ( 0 + 1 ) ... ( N + 1 ) ) = ( 1 ... ( N + 1 ) ) |
| 120 | 117 119 | eleq2s | |- ( k e. ( ( 0 + 1 ) ... ( N + 1 ) ) -> k e. NN ) |
| 121 | 120 | adantl | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> k e. NN ) |
| 122 | nnm1nn0 | |- ( k e. NN -> ( k - 1 ) e. NN0 ) |
|
| 123 | 121 122 | syl | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( k - 1 ) e. NN0 ) |
| 124 | 116 123 | expcld | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( B ^ ( k - 1 ) ) e. CC ) |
| 125 | 115 124 | mulcld | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ ( k - 1 ) ) ) e. CC ) |
| 126 | 114 125 116 | mulassd | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ ( k - 1 ) ) ) ) x. B ) = ( ( N _C ( k - 1 ) ) x. ( ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ ( k - 1 ) ) ) x. B ) ) ) |
| 127 | 115 124 116 | mulassd | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ ( k - 1 ) ) ) x. B ) = ( ( A ^ ( ( N + 1 ) - k ) ) x. ( ( B ^ ( k - 1 ) ) x. B ) ) ) |
| 128 | expm1t | |- ( ( B e. CC /\ k e. NN ) -> ( B ^ k ) = ( ( B ^ ( k - 1 ) ) x. B ) ) |
|
| 129 | 2 120 128 | syl2an | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( B ^ k ) = ( ( B ^ ( k - 1 ) ) x. B ) ) |
| 130 | 129 | oveq2d | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) = ( ( A ^ ( ( N + 1 ) - k ) ) x. ( ( B ^ ( k - 1 ) ) x. B ) ) ) |
| 131 | 127 130 | eqtr4d | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ ( k - 1 ) ) ) x. B ) = ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) |
| 132 | 131 | oveq2d | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ ( k - 1 ) ) ) x. B ) ) = ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 133 | 104 126 132 | 3eqtrd | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) ) x. B ) = ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 134 | 133 | sumeq2dv | |- ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( N - ( k - 1 ) ) ) x. ( B ^ ( k - 1 ) ) ) ) x. B ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 135 | 106 | a1i | |- ( ph -> ( ( 0 + 1 ) ... ( N + 1 ) ) C_ ( 0 ... ( N + 1 ) ) ) |
| 136 | 113 48 | mulcld | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) e. CC ) |
| 137 | 107 136 | sylan2 | |- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) e. CC ) |
| 138 | 3 | adantr | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> N e. NN0 ) |
| 139 | eldifi | |- ( k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> k e. ( 0 ... ( N + 1 ) ) ) |
|
| 140 | 139 | adantl | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> k e. ( 0 ... ( N + 1 ) ) ) |
| 141 | 140 9 | syl | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> k e. ZZ ) |
| 142 | 141 109 | syl | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> ( k - 1 ) e. ZZ ) |
| 143 | eldifn | |- ( k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) -> -. k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) |
|
| 144 | 143 | adantl | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> -. k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) |
| 145 | 72 | a1i | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> 0 e. ZZ ) |
| 146 | 138 | nn0zd | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> N e. ZZ ) |
| 147 | 1zzd | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> 1 e. ZZ ) |
|
| 148 | fzaddel | |- ( ( ( 0 e. ZZ /\ N e. ZZ ) /\ ( ( k - 1 ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( k - 1 ) e. ( 0 ... N ) <-> ( ( k - 1 ) + 1 ) e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) |
|
| 149 | 145 146 142 147 148 | syl22anc | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> ( ( k - 1 ) e. ( 0 ... N ) <-> ( ( k - 1 ) + 1 ) e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) |
| 150 | 141 | zcnd | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> k e. CC ) |
| 151 | ax-1cn | |- 1 e. CC |
|
| 152 | npcan | |- ( ( k e. CC /\ 1 e. CC ) -> ( ( k - 1 ) + 1 ) = k ) |
|
| 153 | 150 151 152 | sylancl | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> ( ( k - 1 ) + 1 ) = k ) |
| 154 | 153 | eleq1d | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> ( ( ( k - 1 ) + 1 ) e. ( ( 0 + 1 ) ... ( N + 1 ) ) <-> k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) |
| 155 | 149 154 | bitrd | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> ( ( k - 1 ) e. ( 0 ... N ) <-> k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) |
| 156 | 144 155 | mtbird | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> -. ( k - 1 ) e. ( 0 ... N ) ) |
| 157 | bcval3 | |- ( ( N e. NN0 /\ ( k - 1 ) e. ZZ /\ -. ( k - 1 ) e. ( 0 ... N ) ) -> ( N _C ( k - 1 ) ) = 0 ) |
|
| 158 | 138 142 156 157 | syl3anc | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> ( N _C ( k - 1 ) ) = 0 ) |
| 159 | 158 | oveq1d | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = ( 0 x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 160 | 139 60 | sylan2 | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> ( 0 x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = 0 ) |
| 161 | 159 160 | eqtrd | |- ( ( ph /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( ( 0 + 1 ) ... ( N + 1 ) ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = 0 ) |
| 162 | 135 137 161 64 | sumss | |- ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 163 | 94 134 162 | 3eqtrd | |- ( ph -> sum_ k e. ( 0 ... N ) ( ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. B ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 164 | 70 163 | eqtrd | |- ( ph -> ( sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) x. B ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 165 | 69 164 | sylan9eqr | |- ( ( ph /\ ps ) -> ( ( ( A + B ) ^ N ) x. B ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 166 | 68 165 | oveq12d | |- ( ( ph /\ ps ) -> ( ( ( ( A + B ) ^ N ) x. A ) + ( ( ( A + B ) ^ N ) x. B ) ) = ( sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) + sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) |
| 167 | 1 2 | addcld | |- ( ph -> ( A + B ) e. CC ) |
| 168 | 167 3 | expp1d | |- ( ph -> ( ( A + B ) ^ ( N + 1 ) ) = ( ( ( A + B ) ^ N ) x. ( A + B ) ) ) |
| 169 | 167 3 | expcld | |- ( ph -> ( ( A + B ) ^ N ) e. CC ) |
| 170 | 169 1 2 | adddid | |- ( ph -> ( ( ( A + B ) ^ N ) x. ( A + B ) ) = ( ( ( ( A + B ) ^ N ) x. A ) + ( ( ( A + B ) ^ N ) x. B ) ) ) |
| 171 | 168 170 | eqtrd | |- ( ph -> ( ( A + B ) ^ ( N + 1 ) ) = ( ( ( ( A + B ) ^ N ) x. A ) + ( ( ( A + B ) ^ N ) x. B ) ) ) |
| 172 | 171 | adantr | |- ( ( ph /\ ps ) -> ( ( A + B ) ^ ( N + 1 ) ) = ( ( ( ( A + B ) ^ N ) x. A ) + ( ( ( A + B ) ^ N ) x. B ) ) ) |
| 173 | bcpasc | |- ( ( N e. NN0 /\ k e. ZZ ) -> ( ( N _C k ) + ( N _C ( k - 1 ) ) ) = ( ( N + 1 ) _C k ) ) |
|
| 174 | 3 9 173 | syl2an | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C k ) + ( N _C ( k - 1 ) ) ) = ( ( N + 1 ) _C k ) ) |
| 175 | 174 | oveq1d | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N _C k ) + ( N _C ( k - 1 ) ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = ( ( ( N + 1 ) _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 176 | 12 113 48 | adddird | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N _C k ) + ( N _C ( k - 1 ) ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = ( ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) + ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) |
| 177 | 175 176 | eqtr3d | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( N + 1 ) _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = ( ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) + ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) |
| 178 | 177 | sumeq2dv | |- ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N + 1 ) _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) + ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) |
| 179 | fzfid | |- ( ph -> ( 0 ... ( N + 1 ) ) e. Fin ) |
|
| 180 | 179 49 136 | fsumadd | |- ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) + ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) = ( sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) + sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) |
| 181 | 178 180 | eqtrd | |- ( ph -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N + 1 ) _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = ( sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) + sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) |
| 182 | 181 | adantr | |- ( ( ph /\ ps ) -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N + 1 ) _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) = ( sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) + sum_ k e. ( 0 ... ( N + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) |
| 183 | 166 172 182 | 3eqtr4d | |- ( ( ph /\ ps ) -> ( ( A + B ) ^ ( N + 1 ) ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( N + 1 ) _C k ) x. ( ( A ^ ( ( N + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |