This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple product of sums expansion. (Contributed by NM, 21-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muladd11 | |- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + A ) x. ( 1 + B ) ) = ( ( 1 + A ) + ( B + ( A x. B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | |- 1 e. CC |
|
| 2 | addcl | |- ( ( 1 e. CC /\ A e. CC ) -> ( 1 + A ) e. CC ) |
|
| 3 | 1 2 | mpan | |- ( A e. CC -> ( 1 + A ) e. CC ) |
| 4 | adddi | |- ( ( ( 1 + A ) e. CC /\ 1 e. CC /\ B e. CC ) -> ( ( 1 + A ) x. ( 1 + B ) ) = ( ( ( 1 + A ) x. 1 ) + ( ( 1 + A ) x. B ) ) ) |
|
| 5 | 1 4 | mp3an2 | |- ( ( ( 1 + A ) e. CC /\ B e. CC ) -> ( ( 1 + A ) x. ( 1 + B ) ) = ( ( ( 1 + A ) x. 1 ) + ( ( 1 + A ) x. B ) ) ) |
| 6 | 3 5 | sylan | |- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + A ) x. ( 1 + B ) ) = ( ( ( 1 + A ) x. 1 ) + ( ( 1 + A ) x. B ) ) ) |
| 7 | 3 | mulridd | |- ( A e. CC -> ( ( 1 + A ) x. 1 ) = ( 1 + A ) ) |
| 8 | 7 | adantr | |- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + A ) x. 1 ) = ( 1 + A ) ) |
| 9 | adddir | |- ( ( 1 e. CC /\ A e. CC /\ B e. CC ) -> ( ( 1 + A ) x. B ) = ( ( 1 x. B ) + ( A x. B ) ) ) |
|
| 10 | 1 9 | mp3an1 | |- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + A ) x. B ) = ( ( 1 x. B ) + ( A x. B ) ) ) |
| 11 | mullid | |- ( B e. CC -> ( 1 x. B ) = B ) |
|
| 12 | 11 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( 1 x. B ) = B ) |
| 13 | 12 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( 1 x. B ) + ( A x. B ) ) = ( B + ( A x. B ) ) ) |
| 14 | 10 13 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + A ) x. B ) = ( B + ( A x. B ) ) ) |
| 15 | 8 14 | oveq12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( 1 + A ) x. 1 ) + ( ( 1 + A ) x. B ) ) = ( ( 1 + A ) + ( B + ( A x. B ) ) ) ) |
| 16 | 6 15 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + A ) x. ( 1 + B ) ) = ( ( 1 + A ) + ( B + ( A x. B ) ) ) ) |