This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A square is nonnegative. (Contributed by NM, 23-May-2007) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | msqge0 | |- ( A e. RR -> 0 <_ ( A x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 | |- ( ( A = 0 /\ A = 0 ) -> ( A x. A ) = ( 0 x. 0 ) ) |
|
| 2 | 1 | anidms | |- ( A = 0 -> ( A x. A ) = ( 0 x. 0 ) ) |
| 3 | 0cn | |- 0 e. CC |
|
| 4 | 3 | mul01i | |- ( 0 x. 0 ) = 0 |
| 5 | 2 4 | eqtrdi | |- ( A = 0 -> ( A x. A ) = 0 ) |
| 6 | 5 | breq2d | |- ( A = 0 -> ( 0 <_ ( A x. A ) <-> 0 <_ 0 ) ) |
| 7 | 0red | |- ( ( A e. RR /\ A =/= 0 ) -> 0 e. RR ) |
|
| 8 | simpl | |- ( ( A e. RR /\ A =/= 0 ) -> A e. RR ) |
|
| 9 | 8 8 | remulcld | |- ( ( A e. RR /\ A =/= 0 ) -> ( A x. A ) e. RR ) |
| 10 | msqgt0 | |- ( ( A e. RR /\ A =/= 0 ) -> 0 < ( A x. A ) ) |
|
| 11 | 7 9 10 | ltled | |- ( ( A e. RR /\ A =/= 0 ) -> 0 <_ ( A x. A ) ) |
| 12 | 0re | |- 0 e. RR |
|
| 13 | leid | |- ( 0 e. RR -> 0 <_ 0 ) |
|
| 14 | 12 13 | mp1i | |- ( A e. RR -> 0 <_ 0 ) |
| 15 | 6 11 14 | pm2.61ne | |- ( A e. RR -> 0 <_ ( A x. A ) ) |