This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex . (Contributed by NM, 15-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axrnegex | |- ( A e. RR -> E. x e. RR ( A + x ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal2 | |- ( A e. RR <-> ( ( 1st ` A ) e. R. /\ A = <. ( 1st ` A ) , 0R >. ) ) |
|
| 2 | 1 | simplbi | |- ( A e. RR -> ( 1st ` A ) e. R. ) |
| 3 | m1r | |- -1R e. R. |
|
| 4 | mulclsr | |- ( ( ( 1st ` A ) e. R. /\ -1R e. R. ) -> ( ( 1st ` A ) .R -1R ) e. R. ) |
|
| 5 | 2 3 4 | sylancl | |- ( A e. RR -> ( ( 1st ` A ) .R -1R ) e. R. ) |
| 6 | opelreal | |- ( <. ( ( 1st ` A ) .R -1R ) , 0R >. e. RR <-> ( ( 1st ` A ) .R -1R ) e. R. ) |
|
| 7 | 5 6 | sylibr | |- ( A e. RR -> <. ( ( 1st ` A ) .R -1R ) , 0R >. e. RR ) |
| 8 | 1 | simprbi | |- ( A e. RR -> A = <. ( 1st ` A ) , 0R >. ) |
| 9 | 8 | oveq1d | |- ( A e. RR -> ( A + <. ( ( 1st ` A ) .R -1R ) , 0R >. ) = ( <. ( 1st ` A ) , 0R >. + <. ( ( 1st ` A ) .R -1R ) , 0R >. ) ) |
| 10 | addresr | |- ( ( ( 1st ` A ) e. R. /\ ( ( 1st ` A ) .R -1R ) e. R. ) -> ( <. ( 1st ` A ) , 0R >. + <. ( ( 1st ` A ) .R -1R ) , 0R >. ) = <. ( ( 1st ` A ) +R ( ( 1st ` A ) .R -1R ) ) , 0R >. ) |
|
| 11 | 2 5 10 | syl2anc | |- ( A e. RR -> ( <. ( 1st ` A ) , 0R >. + <. ( ( 1st ` A ) .R -1R ) , 0R >. ) = <. ( ( 1st ` A ) +R ( ( 1st ` A ) .R -1R ) ) , 0R >. ) |
| 12 | pn0sr | |- ( ( 1st ` A ) e. R. -> ( ( 1st ` A ) +R ( ( 1st ` A ) .R -1R ) ) = 0R ) |
|
| 13 | 12 | opeq1d | |- ( ( 1st ` A ) e. R. -> <. ( ( 1st ` A ) +R ( ( 1st ` A ) .R -1R ) ) , 0R >. = <. 0R , 0R >. ) |
| 14 | df-0 | |- 0 = <. 0R , 0R >. |
|
| 15 | 13 14 | eqtr4di | |- ( ( 1st ` A ) e. R. -> <. ( ( 1st ` A ) +R ( ( 1st ` A ) .R -1R ) ) , 0R >. = 0 ) |
| 16 | 2 15 | syl | |- ( A e. RR -> <. ( ( 1st ` A ) +R ( ( 1st ` A ) .R -1R ) ) , 0R >. = 0 ) |
| 17 | 9 11 16 | 3eqtrd | |- ( A e. RR -> ( A + <. ( ( 1st ` A ) .R -1R ) , 0R >. ) = 0 ) |
| 18 | oveq2 | |- ( x = <. ( ( 1st ` A ) .R -1R ) , 0R >. -> ( A + x ) = ( A + <. ( ( 1st ` A ) .R -1R ) , 0R >. ) ) |
|
| 19 | 18 | eqeq1d | |- ( x = <. ( ( 1st ` A ) .R -1R ) , 0R >. -> ( ( A + x ) = 0 <-> ( A + <. ( ( 1st ` A ) .R -1R ) , 0R >. ) = 0 ) ) |
| 20 | 19 | rspcev | |- ( ( <. ( ( 1st ` A ) .R -1R ) , 0R >. e. RR /\ ( A + <. ( ( 1st ` A ) .R -1R ) , 0R >. ) = 0 ) -> E. x e. RR ( A + x ) = 0 ) |
| 21 | 7 17 20 | syl2anc | |- ( A e. RR -> E. x e. RR ( A + x ) = 0 ) |