This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elreal2 | |- ( A e. RR <-> ( ( 1st ` A ) e. R. /\ A = <. ( 1st ` A ) , 0R >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-r | |- RR = ( R. X. { 0R } ) |
|
| 2 | 1 | eleq2i | |- ( A e. RR <-> A e. ( R. X. { 0R } ) ) |
| 3 | xp1st | |- ( A e. ( R. X. { 0R } ) -> ( 1st ` A ) e. R. ) |
|
| 4 | 1st2nd2 | |- ( A e. ( R. X. { 0R } ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
|
| 5 | xp2nd | |- ( A e. ( R. X. { 0R } ) -> ( 2nd ` A ) e. { 0R } ) |
|
| 6 | elsni | |- ( ( 2nd ` A ) e. { 0R } -> ( 2nd ` A ) = 0R ) |
|
| 7 | 5 6 | syl | |- ( A e. ( R. X. { 0R } ) -> ( 2nd ` A ) = 0R ) |
| 8 | 7 | opeq2d | |- ( A e. ( R. X. { 0R } ) -> <. ( 1st ` A ) , ( 2nd ` A ) >. = <. ( 1st ` A ) , 0R >. ) |
| 9 | 4 8 | eqtrd | |- ( A e. ( R. X. { 0R } ) -> A = <. ( 1st ` A ) , 0R >. ) |
| 10 | 3 9 | jca | |- ( A e. ( R. X. { 0R } ) -> ( ( 1st ` A ) e. R. /\ A = <. ( 1st ` A ) , 0R >. ) ) |
| 11 | eleq1 | |- ( A = <. ( 1st ` A ) , 0R >. -> ( A e. ( R. X. { 0R } ) <-> <. ( 1st ` A ) , 0R >. e. ( R. X. { 0R } ) ) ) |
|
| 12 | 0r | |- 0R e. R. |
|
| 13 | 12 | elexi | |- 0R e. _V |
| 14 | 13 | snid | |- 0R e. { 0R } |
| 15 | opelxp | |- ( <. ( 1st ` A ) , 0R >. e. ( R. X. { 0R } ) <-> ( ( 1st ` A ) e. R. /\ 0R e. { 0R } ) ) |
|
| 16 | 14 15 | mpbiran2 | |- ( <. ( 1st ` A ) , 0R >. e. ( R. X. { 0R } ) <-> ( 1st ` A ) e. R. ) |
| 17 | 11 16 | bitrdi | |- ( A = <. ( 1st ` A ) , 0R >. -> ( A e. ( R. X. { 0R } ) <-> ( 1st ` A ) e. R. ) ) |
| 18 | 17 | biimparc | |- ( ( ( 1st ` A ) e. R. /\ A = <. ( 1st ` A ) , 0R >. ) -> A e. ( R. X. { 0R } ) ) |
| 19 | 10 18 | impbii | |- ( A e. ( R. X. { 0R } ) <-> ( ( 1st ` A ) e. R. /\ A = <. ( 1st ` A ) , 0R >. ) ) |
| 20 | 2 19 | bitri | |- ( A e. RR <-> ( ( 1st ` A ) e. R. /\ A = <. ( 1st ` A ) , 0R >. ) ) |