This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addresr | |- ( ( A e. R. /\ B e. R. ) -> ( <. A , 0R >. + <. B , 0R >. ) = <. ( A +R B ) , 0R >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0r | |- 0R e. R. |
|
| 2 | addcnsr | |- ( ( ( A e. R. /\ 0R e. R. ) /\ ( B e. R. /\ 0R e. R. ) ) -> ( <. A , 0R >. + <. B , 0R >. ) = <. ( A +R B ) , ( 0R +R 0R ) >. ) |
|
| 3 | 2 | an4s | |- ( ( ( A e. R. /\ B e. R. ) /\ ( 0R e. R. /\ 0R e. R. ) ) -> ( <. A , 0R >. + <. B , 0R >. ) = <. ( A +R B ) , ( 0R +R 0R ) >. ) |
| 4 | 1 1 3 | mpanr12 | |- ( ( A e. R. /\ B e. R. ) -> ( <. A , 0R >. + <. B , 0R >. ) = <. ( A +R B ) , ( 0R +R 0R ) >. ) |
| 5 | 0idsr | |- ( 0R e. R. -> ( 0R +R 0R ) = 0R ) |
|
| 6 | 1 5 | ax-mp | |- ( 0R +R 0R ) = 0R |
| 7 | 6 | opeq2i | |- <. ( A +R B ) , ( 0R +R 0R ) >. = <. ( A +R B ) , 0R >. |
| 8 | 4 7 | eqtrdi | |- ( ( A e. R. /\ B e. R. ) -> ( <. A , 0R >. + <. B , 0R >. ) = <. ( A +R B ) , 0R >. ) |