This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rrecex . (Contributed by NM, 15-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axrrecex | |- ( ( A e. RR /\ A =/= 0 ) -> E. x e. RR ( A x. x ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal | |- ( A e. RR <-> E. y e. R. <. y , 0R >. = A ) |
|
| 2 | df-rex | |- ( E. y e. R. <. y , 0R >. = A <-> E. y ( y e. R. /\ <. y , 0R >. = A ) ) |
|
| 3 | 1 2 | bitri | |- ( A e. RR <-> E. y ( y e. R. /\ <. y , 0R >. = A ) ) |
| 4 | neeq1 | |- ( <. y , 0R >. = A -> ( <. y , 0R >. =/= 0 <-> A =/= 0 ) ) |
|
| 5 | oveq1 | |- ( <. y , 0R >. = A -> ( <. y , 0R >. x. x ) = ( A x. x ) ) |
|
| 6 | 5 | eqeq1d | |- ( <. y , 0R >. = A -> ( ( <. y , 0R >. x. x ) = 1 <-> ( A x. x ) = 1 ) ) |
| 7 | 6 | rexbidv | |- ( <. y , 0R >. = A -> ( E. x e. RR ( <. y , 0R >. x. x ) = 1 <-> E. x e. RR ( A x. x ) = 1 ) ) |
| 8 | 4 7 | imbi12d | |- ( <. y , 0R >. = A -> ( ( <. y , 0R >. =/= 0 -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) <-> ( A =/= 0 -> E. x e. RR ( A x. x ) = 1 ) ) ) |
| 9 | df-0 | |- 0 = <. 0R , 0R >. |
|
| 10 | 9 | eqeq2i | |- ( <. y , 0R >. = 0 <-> <. y , 0R >. = <. 0R , 0R >. ) |
| 11 | vex | |- y e. _V |
|
| 12 | 11 | eqresr | |- ( <. y , 0R >. = <. 0R , 0R >. <-> y = 0R ) |
| 13 | 10 12 | bitri | |- ( <. y , 0R >. = 0 <-> y = 0R ) |
| 14 | 13 | necon3bii | |- ( <. y , 0R >. =/= 0 <-> y =/= 0R ) |
| 15 | recexsr | |- ( ( y e. R. /\ y =/= 0R ) -> E. z e. R. ( y .R z ) = 1R ) |
|
| 16 | 15 | ex | |- ( y e. R. -> ( y =/= 0R -> E. z e. R. ( y .R z ) = 1R ) ) |
| 17 | opelreal | |- ( <. z , 0R >. e. RR <-> z e. R. ) |
|
| 18 | 17 | anbi1i | |- ( ( <. z , 0R >. e. RR /\ ( <. y , 0R >. x. <. z , 0R >. ) = 1 ) <-> ( z e. R. /\ ( <. y , 0R >. x. <. z , 0R >. ) = 1 ) ) |
| 19 | mulresr | |- ( ( y e. R. /\ z e. R. ) -> ( <. y , 0R >. x. <. z , 0R >. ) = <. ( y .R z ) , 0R >. ) |
|
| 20 | 19 | eqeq1d | |- ( ( y e. R. /\ z e. R. ) -> ( ( <. y , 0R >. x. <. z , 0R >. ) = 1 <-> <. ( y .R z ) , 0R >. = 1 ) ) |
| 21 | df-1 | |- 1 = <. 1R , 0R >. |
|
| 22 | 21 | eqeq2i | |- ( <. ( y .R z ) , 0R >. = 1 <-> <. ( y .R z ) , 0R >. = <. 1R , 0R >. ) |
| 23 | ovex | |- ( y .R z ) e. _V |
|
| 24 | 23 | eqresr | |- ( <. ( y .R z ) , 0R >. = <. 1R , 0R >. <-> ( y .R z ) = 1R ) |
| 25 | 22 24 | bitri | |- ( <. ( y .R z ) , 0R >. = 1 <-> ( y .R z ) = 1R ) |
| 26 | 20 25 | bitrdi | |- ( ( y e. R. /\ z e. R. ) -> ( ( <. y , 0R >. x. <. z , 0R >. ) = 1 <-> ( y .R z ) = 1R ) ) |
| 27 | 26 | pm5.32da | |- ( y e. R. -> ( ( z e. R. /\ ( <. y , 0R >. x. <. z , 0R >. ) = 1 ) <-> ( z e. R. /\ ( y .R z ) = 1R ) ) ) |
| 28 | 18 27 | bitrid | |- ( y e. R. -> ( ( <. z , 0R >. e. RR /\ ( <. y , 0R >. x. <. z , 0R >. ) = 1 ) <-> ( z e. R. /\ ( y .R z ) = 1R ) ) ) |
| 29 | oveq2 | |- ( x = <. z , 0R >. -> ( <. y , 0R >. x. x ) = ( <. y , 0R >. x. <. z , 0R >. ) ) |
|
| 30 | 29 | eqeq1d | |- ( x = <. z , 0R >. -> ( ( <. y , 0R >. x. x ) = 1 <-> ( <. y , 0R >. x. <. z , 0R >. ) = 1 ) ) |
| 31 | 30 | rspcev | |- ( ( <. z , 0R >. e. RR /\ ( <. y , 0R >. x. <. z , 0R >. ) = 1 ) -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) |
| 32 | 28 31 | biimtrrdi | |- ( y e. R. -> ( ( z e. R. /\ ( y .R z ) = 1R ) -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) ) |
| 33 | 32 | expd | |- ( y e. R. -> ( z e. R. -> ( ( y .R z ) = 1R -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) ) ) |
| 34 | 33 | rexlimdv | |- ( y e. R. -> ( E. z e. R. ( y .R z ) = 1R -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) ) |
| 35 | 16 34 | syld | |- ( y e. R. -> ( y =/= 0R -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) ) |
| 36 | 14 35 | biimtrid | |- ( y e. R. -> ( <. y , 0R >. =/= 0 -> E. x e. RR ( <. y , 0R >. x. x ) = 1 ) ) |
| 37 | 3 8 36 | gencl | |- ( A e. RR -> ( A =/= 0 -> E. x e. RR ( A x. x ) = 1 ) ) |
| 38 | 37 | imp | |- ( ( A e. RR /\ A =/= 0 ) -> E. x e. RR ( A x. x ) = 1 ) |