This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication is an operation on the complex numbers. This is the construction-dependent version of ax-mulf and it should not be referenced outside the construction. We generally prefer to develop our theory using the less specific mulcl . (Contributed by NM, 8-Feb-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axmulf | |- x. : ( CC X. CC ) --> CC |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moeq | |- E* z z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. |
|
| 2 | 1 | mosubop | |- E* z E. u E. f ( y = <. u , f >. /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) |
| 3 | 2 | mosubop | |- E* z E. w E. v ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) |
| 4 | anass | |- ( ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) <-> ( x = <. w , v >. /\ ( y = <. u , f >. /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) ) |
|
| 5 | 4 | 2exbii | |- ( E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) <-> E. u E. f ( x = <. w , v >. /\ ( y = <. u , f >. /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) ) |
| 6 | 19.42vv | |- ( E. u E. f ( x = <. w , v >. /\ ( y = <. u , f >. /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) <-> ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) ) |
|
| 7 | 5 6 | bitri | |- ( E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) <-> ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) ) |
| 8 | 7 | 2exbii | |- ( E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) <-> E. w E. v ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) ) |
| 9 | 8 | mobii | |- ( E* z E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) <-> E* z E. w E. v ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) ) |
| 10 | 3 9 | mpbir | |- E* z E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) |
| 11 | 10 | moani | |- E* z ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) |
| 12 | 11 | funoprab | |- Fun { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) } |
| 13 | df-mul | |- x. = { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) } |
|
| 14 | 13 | funeqi | |- ( Fun x. <-> Fun { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) } ) |
| 15 | 12 14 | mpbir | |- Fun x. |
| 16 | 13 | dmeqi | |- dom x. = dom { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) } |
| 17 | dmoprabss | |- dom { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) } C_ ( CC X. CC ) |
|
| 18 | 16 17 | eqsstri | |- dom x. C_ ( CC X. CC ) |
| 19 | 0ncn | |- -. (/) e. CC |
|
| 20 | df-c | |- CC = ( R. X. R. ) |
|
| 21 | oveq1 | |- ( <. z , w >. = x -> ( <. z , w >. x. <. v , u >. ) = ( x x. <. v , u >. ) ) |
|
| 22 | 21 | eleq1d | |- ( <. z , w >. = x -> ( ( <. z , w >. x. <. v , u >. ) e. ( R. X. R. ) <-> ( x x. <. v , u >. ) e. ( R. X. R. ) ) ) |
| 23 | oveq2 | |- ( <. v , u >. = y -> ( x x. <. v , u >. ) = ( x x. y ) ) |
|
| 24 | 23 | eleq1d | |- ( <. v , u >. = y -> ( ( x x. <. v , u >. ) e. ( R. X. R. ) <-> ( x x. y ) e. ( R. X. R. ) ) ) |
| 25 | mulcnsr | |- ( ( ( z e. R. /\ w e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> ( <. z , w >. x. <. v , u >. ) = <. ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) , ( ( w .R v ) +R ( z .R u ) ) >. ) |
|
| 26 | mulclsr | |- ( ( z e. R. /\ v e. R. ) -> ( z .R v ) e. R. ) |
|
| 27 | m1r | |- -1R e. R. |
|
| 28 | mulclsr | |- ( ( w e. R. /\ u e. R. ) -> ( w .R u ) e. R. ) |
|
| 29 | mulclsr | |- ( ( -1R e. R. /\ ( w .R u ) e. R. ) -> ( -1R .R ( w .R u ) ) e. R. ) |
|
| 30 | 27 28 29 | sylancr | |- ( ( w e. R. /\ u e. R. ) -> ( -1R .R ( w .R u ) ) e. R. ) |
| 31 | addclsr | |- ( ( ( z .R v ) e. R. /\ ( -1R .R ( w .R u ) ) e. R. ) -> ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) e. R. ) |
|
| 32 | 26 30 31 | syl2an | |- ( ( ( z e. R. /\ v e. R. ) /\ ( w e. R. /\ u e. R. ) ) -> ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) e. R. ) |
| 33 | 32 | an4s | |- ( ( ( z e. R. /\ w e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) e. R. ) |
| 34 | mulclsr | |- ( ( w e. R. /\ v e. R. ) -> ( w .R v ) e. R. ) |
|
| 35 | mulclsr | |- ( ( z e. R. /\ u e. R. ) -> ( z .R u ) e. R. ) |
|
| 36 | addclsr | |- ( ( ( w .R v ) e. R. /\ ( z .R u ) e. R. ) -> ( ( w .R v ) +R ( z .R u ) ) e. R. ) |
|
| 37 | 34 35 36 | syl2anr | |- ( ( ( z e. R. /\ u e. R. ) /\ ( w e. R. /\ v e. R. ) ) -> ( ( w .R v ) +R ( z .R u ) ) e. R. ) |
| 38 | 37 | an42s | |- ( ( ( z e. R. /\ w e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> ( ( w .R v ) +R ( z .R u ) ) e. R. ) |
| 39 | 33 38 | opelxpd | |- ( ( ( z e. R. /\ w e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> <. ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) , ( ( w .R v ) +R ( z .R u ) ) >. e. ( R. X. R. ) ) |
| 40 | 25 39 | eqeltrd | |- ( ( ( z e. R. /\ w e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> ( <. z , w >. x. <. v , u >. ) e. ( R. X. R. ) ) |
| 41 | 20 22 24 40 | 2optocl | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. ( R. X. R. ) ) |
| 42 | 41 20 | eleqtrrdi | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
| 43 | 19 42 | oprssdm | |- ( CC X. CC ) C_ dom x. |
| 44 | 18 43 | eqssi | |- dom x. = ( CC X. CC ) |
| 45 | df-fn | |- ( x. Fn ( CC X. CC ) <-> ( Fun x. /\ dom x. = ( CC X. CC ) ) ) |
|
| 46 | 15 44 45 | mpbir2an | |- x. Fn ( CC X. CC ) |
| 47 | 42 | rgen2 | |- A. x e. CC A. y e. CC ( x x. y ) e. CC |
| 48 | ffnov | |- ( x. : ( CC X. CC ) --> CC <-> ( x. Fn ( CC X. CC ) /\ A. x e. CC A. y e. CC ( x x. y ) e. CC ) ) |
|
| 49 | 46 47 48 | mpbir2an | |- x. : ( CC X. CC ) --> CC |