This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mul | |- x. = { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmul | |- x. |
|
| 1 | vx | |- x |
|
| 2 | vy | |- y |
|
| 3 | vz | |- z |
|
| 4 | 1 | cv | |- x |
| 5 | cc | |- CC |
|
| 6 | 4 5 | wcel | |- x e. CC |
| 7 | 2 | cv | |- y |
| 8 | 7 5 | wcel | |- y e. CC |
| 9 | 6 8 | wa | |- ( x e. CC /\ y e. CC ) |
| 10 | vw | |- w |
|
| 11 | vv | |- v |
|
| 12 | vu | |- u |
|
| 13 | vf | |- f |
|
| 14 | 10 | cv | |- w |
| 15 | 11 | cv | |- v |
| 16 | 14 15 | cop | |- <. w , v >. |
| 17 | 4 16 | wceq | |- x = <. w , v >. |
| 18 | 12 | cv | |- u |
| 19 | 13 | cv | |- f |
| 20 | 18 19 | cop | |- <. u , f >. |
| 21 | 7 20 | wceq | |- y = <. u , f >. |
| 22 | 17 21 | wa | |- ( x = <. w , v >. /\ y = <. u , f >. ) |
| 23 | 3 | cv | |- z |
| 24 | cmr | |- .R |
|
| 25 | 14 18 24 | co | |- ( w .R u ) |
| 26 | cplr | |- +R |
|
| 27 | cm1r | |- -1R |
|
| 28 | 15 19 24 | co | |- ( v .R f ) |
| 29 | 27 28 24 | co | |- ( -1R .R ( v .R f ) ) |
| 30 | 25 29 26 | co | |- ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) |
| 31 | 15 18 24 | co | |- ( v .R u ) |
| 32 | 14 19 24 | co | |- ( w .R f ) |
| 33 | 31 32 26 | co | |- ( ( v .R u ) +R ( w .R f ) ) |
| 34 | 30 33 | cop | |- <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. |
| 35 | 23 34 | wceq | |- z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. |
| 36 | 22 35 | wa | |- ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) |
| 37 | 36 13 | wex | |- E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) |
| 38 | 37 12 | wex | |- E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) |
| 39 | 38 11 | wex | |- E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) |
| 40 | 39 10 | wex | |- E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) |
| 41 | 9 40 | wa | |- ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) |
| 42 | 41 1 2 3 | coprab | |- { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) } |
| 43 | 0 42 | wceq | |- x. = { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) } |