This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2optocl.1 | |- R = ( C X. D ) |
|
| 2optocl.2 | |- ( <. x , y >. = A -> ( ph <-> ps ) ) |
||
| 2optocl.3 | |- ( <. z , w >. = B -> ( ps <-> ch ) ) |
||
| 2optocl.4 | |- ( ( ( x e. C /\ y e. D ) /\ ( z e. C /\ w e. D ) ) -> ph ) |
||
| Assertion | 2optocl | |- ( ( A e. R /\ B e. R ) -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2optocl.1 | |- R = ( C X. D ) |
|
| 2 | 2optocl.2 | |- ( <. x , y >. = A -> ( ph <-> ps ) ) |
|
| 3 | 2optocl.3 | |- ( <. z , w >. = B -> ( ps <-> ch ) ) |
|
| 4 | 2optocl.4 | |- ( ( ( x e. C /\ y e. D ) /\ ( z e. C /\ w e. D ) ) -> ph ) |
|
| 5 | 3 | imbi2d | |- ( <. z , w >. = B -> ( ( A e. R -> ps ) <-> ( A e. R -> ch ) ) ) |
| 6 | 2 | imbi2d | |- ( <. x , y >. = A -> ( ( ( z e. C /\ w e. D ) -> ph ) <-> ( ( z e. C /\ w e. D ) -> ps ) ) ) |
| 7 | 4 | ex | |- ( ( x e. C /\ y e. D ) -> ( ( z e. C /\ w e. D ) -> ph ) ) |
| 8 | 1 6 7 | optocl | |- ( A e. R -> ( ( z e. C /\ w e. D ) -> ps ) ) |
| 9 | 8 | com12 | |- ( ( z e. C /\ w e. D ) -> ( A e. R -> ps ) ) |
| 10 | 1 5 9 | optocl | |- ( B e. R -> ( A e. R -> ch ) ) |
| 11 | 10 | impcom | |- ( ( A e. R /\ B e. R ) -> ch ) |