This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of an operation class abstraction. (Contributed by NM, 24-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmoprabss | |- dom { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) } C_ ( A X. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmoprab | |- dom { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) } = { <. x , y >. | E. z ( ( x e. A /\ y e. B ) /\ ph ) } |
|
| 2 | 19.42v | |- ( E. z ( ( x e. A /\ y e. B ) /\ ph ) <-> ( ( x e. A /\ y e. B ) /\ E. z ph ) ) |
|
| 3 | 2 | opabbii | |- { <. x , y >. | E. z ( ( x e. A /\ y e. B ) /\ ph ) } = { <. x , y >. | ( ( x e. A /\ y e. B ) /\ E. z ph ) } |
| 4 | opabssxp | |- { <. x , y >. | ( ( x e. A /\ y e. B ) /\ E. z ph ) } C_ ( A X. B ) |
|
| 5 | 3 4 | eqsstri | |- { <. x , y >. | E. z ( ( x e. A /\ y e. B ) /\ ph ) } C_ ( A X. B ) |
| 6 | 1 5 | eqsstri | |- dom { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) } C_ ( A X. B ) |