This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of closure of an operation. (Contributed by NM, 24-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oprssdm.1 | |- -. (/) e. S |
|
| oprssdm.2 | |- ( ( x e. S /\ y e. S ) -> ( x F y ) e. S ) |
||
| Assertion | oprssdm | |- ( S X. S ) C_ dom F |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprssdm.1 | |- -. (/) e. S |
|
| 2 | oprssdm.2 | |- ( ( x e. S /\ y e. S ) -> ( x F y ) e. S ) |
|
| 3 | relxp | |- Rel ( S X. S ) |
|
| 4 | opelxp | |- ( <. x , y >. e. ( S X. S ) <-> ( x e. S /\ y e. S ) ) |
|
| 5 | df-ov | |- ( x F y ) = ( F ` <. x , y >. ) |
|
| 6 | 5 2 | eqeltrrid | |- ( ( x e. S /\ y e. S ) -> ( F ` <. x , y >. ) e. S ) |
| 7 | ndmfv | |- ( -. <. x , y >. e. dom F -> ( F ` <. x , y >. ) = (/) ) |
|
| 8 | 7 | eleq1d | |- ( -. <. x , y >. e. dom F -> ( ( F ` <. x , y >. ) e. S <-> (/) e. S ) ) |
| 9 | 1 8 | mtbiri | |- ( -. <. x , y >. e. dom F -> -. ( F ` <. x , y >. ) e. S ) |
| 10 | 9 | con4i | |- ( ( F ` <. x , y >. ) e. S -> <. x , y >. e. dom F ) |
| 11 | 6 10 | syl | |- ( ( x e. S /\ y e. S ) -> <. x , y >. e. dom F ) |
| 12 | 4 11 | sylbi | |- ( <. x , y >. e. ( S X. S ) -> <. x , y >. e. dom F ) |
| 13 | 3 12 | relssi | |- ( S X. S ) C_ dom F |