This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of Mendelson p. 255. (Contributed by NM, 17-Dec-2003) (Revised by Mario Carneiro, 15-Nov-2014) (Revised by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapsnend.a | |- ( ph -> A e. V ) |
|
| mapsnend.b | |- ( ph -> B e. W ) |
||
| Assertion | mapsnend | |- ( ph -> ( A ^m { B } ) ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsnend.a | |- ( ph -> A e. V ) |
|
| 2 | mapsnend.b | |- ( ph -> B e. W ) |
|
| 3 | ovexd | |- ( ph -> ( A ^m { B } ) e. _V ) |
|
| 4 | fvexd | |- ( z e. ( A ^m { B } ) -> ( z ` B ) e. _V ) |
|
| 5 | 4 | a1i | |- ( ph -> ( z e. ( A ^m { B } ) -> ( z ` B ) e. _V ) ) |
| 6 | snex | |- { <. B , w >. } e. _V |
|
| 7 | 6 | 2a1i | |- ( ph -> ( w e. A -> { <. B , w >. } e. _V ) ) |
| 8 | 1 2 | mapsnd | |- ( ph -> ( A ^m { B } ) = { z | E. y e. A z = { <. B , y >. } } ) |
| 9 | 8 | eqabrd | |- ( ph -> ( z e. ( A ^m { B } ) <-> E. y e. A z = { <. B , y >. } ) ) |
| 10 | 9 | anbi1d | |- ( ph -> ( ( z e. ( A ^m { B } ) /\ w = ( z ` B ) ) <-> ( E. y e. A z = { <. B , y >. } /\ w = ( z ` B ) ) ) ) |
| 11 | r19.41v | |- ( E. y e. A ( z = { <. B , y >. } /\ w = ( z ` B ) ) <-> ( E. y e. A z = { <. B , y >. } /\ w = ( z ` B ) ) ) |
|
| 12 | 11 | bicomi | |- ( ( E. y e. A z = { <. B , y >. } /\ w = ( z ` B ) ) <-> E. y e. A ( z = { <. B , y >. } /\ w = ( z ` B ) ) ) |
| 13 | 12 | a1i | |- ( ph -> ( ( E. y e. A z = { <. B , y >. } /\ w = ( z ` B ) ) <-> E. y e. A ( z = { <. B , y >. } /\ w = ( z ` B ) ) ) ) |
| 14 | df-rex | |- ( E. y e. A ( z = { <. B , y >. } /\ w = ( z ` B ) ) <-> E. y ( y e. A /\ ( z = { <. B , y >. } /\ w = ( z ` B ) ) ) ) |
|
| 15 | 14 | a1i | |- ( ph -> ( E. y e. A ( z = { <. B , y >. } /\ w = ( z ` B ) ) <-> E. y ( y e. A /\ ( z = { <. B , y >. } /\ w = ( z ` B ) ) ) ) ) |
| 16 | 10 13 15 | 3bitrd | |- ( ph -> ( ( z e. ( A ^m { B } ) /\ w = ( z ` B ) ) <-> E. y ( y e. A /\ ( z = { <. B , y >. } /\ w = ( z ` B ) ) ) ) ) |
| 17 | fveq1 | |- ( z = { <. B , y >. } -> ( z ` B ) = ( { <. B , y >. } ` B ) ) |
|
| 18 | vex | |- y e. _V |
|
| 19 | fvsng | |- ( ( B e. W /\ y e. _V ) -> ( { <. B , y >. } ` B ) = y ) |
|
| 20 | 2 18 19 | sylancl | |- ( ph -> ( { <. B , y >. } ` B ) = y ) |
| 21 | 17 20 | sylan9eqr | |- ( ( ph /\ z = { <. B , y >. } ) -> ( z ` B ) = y ) |
| 22 | 21 | eqeq2d | |- ( ( ph /\ z = { <. B , y >. } ) -> ( w = ( z ` B ) <-> w = y ) ) |
| 23 | equcom | |- ( w = y <-> y = w ) |
|
| 24 | 22 23 | bitrdi | |- ( ( ph /\ z = { <. B , y >. } ) -> ( w = ( z ` B ) <-> y = w ) ) |
| 25 | 24 | pm5.32da | |- ( ph -> ( ( z = { <. B , y >. } /\ w = ( z ` B ) ) <-> ( z = { <. B , y >. } /\ y = w ) ) ) |
| 26 | 25 | anbi2d | |- ( ph -> ( ( y e. A /\ ( z = { <. B , y >. } /\ w = ( z ` B ) ) ) <-> ( y e. A /\ ( z = { <. B , y >. } /\ y = w ) ) ) ) |
| 27 | anass | |- ( ( ( y e. A /\ z = { <. B , y >. } ) /\ y = w ) <-> ( y e. A /\ ( z = { <. B , y >. } /\ y = w ) ) ) |
|
| 28 | 27 | a1i | |- ( ph -> ( ( ( y e. A /\ z = { <. B , y >. } ) /\ y = w ) <-> ( y e. A /\ ( z = { <. B , y >. } /\ y = w ) ) ) ) |
| 29 | ancom | |- ( ( ( y e. A /\ z = { <. B , y >. } ) /\ y = w ) <-> ( y = w /\ ( y e. A /\ z = { <. B , y >. } ) ) ) |
|
| 30 | 29 | a1i | |- ( ph -> ( ( ( y e. A /\ z = { <. B , y >. } ) /\ y = w ) <-> ( y = w /\ ( y e. A /\ z = { <. B , y >. } ) ) ) ) |
| 31 | 26 28 30 | 3bitr2d | |- ( ph -> ( ( y e. A /\ ( z = { <. B , y >. } /\ w = ( z ` B ) ) ) <-> ( y = w /\ ( y e. A /\ z = { <. B , y >. } ) ) ) ) |
| 32 | 31 | exbidv | |- ( ph -> ( E. y ( y e. A /\ ( z = { <. B , y >. } /\ w = ( z ` B ) ) ) <-> E. y ( y = w /\ ( y e. A /\ z = { <. B , y >. } ) ) ) ) |
| 33 | eleq1w | |- ( y = w -> ( y e. A <-> w e. A ) ) |
|
| 34 | opeq2 | |- ( y = w -> <. B , y >. = <. B , w >. ) |
|
| 35 | 34 | sneqd | |- ( y = w -> { <. B , y >. } = { <. B , w >. } ) |
| 36 | 35 | eqeq2d | |- ( y = w -> ( z = { <. B , y >. } <-> z = { <. B , w >. } ) ) |
| 37 | 33 36 | anbi12d | |- ( y = w -> ( ( y e. A /\ z = { <. B , y >. } ) <-> ( w e. A /\ z = { <. B , w >. } ) ) ) |
| 38 | 37 | equsexvw | |- ( E. y ( y = w /\ ( y e. A /\ z = { <. B , y >. } ) ) <-> ( w e. A /\ z = { <. B , w >. } ) ) |
| 39 | 38 | a1i | |- ( ph -> ( E. y ( y = w /\ ( y e. A /\ z = { <. B , y >. } ) ) <-> ( w e. A /\ z = { <. B , w >. } ) ) ) |
| 40 | 16 32 39 | 3bitrd | |- ( ph -> ( ( z e. ( A ^m { B } ) /\ w = ( z ` B ) ) <-> ( w e. A /\ z = { <. B , w >. } ) ) ) |
| 41 | 3 1 5 7 40 | en2d | |- ( ph -> ( A ^m { B } ) ~~ A ) |