This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackbij1lem6 | |- ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) -> ( A u. B ) e. ( ~P _om i^i Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel2 | |- ( A e. ( ~P _om i^i Fin ) -> A e. Fin ) |
|
| 2 | elinel2 | |- ( B e. ( ~P _om i^i Fin ) -> B e. Fin ) |
|
| 3 | unfi | |- ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) e. Fin ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) -> ( A u. B ) e. Fin ) |
| 5 | elinel1 | |- ( A e. ( ~P _om i^i Fin ) -> A e. ~P _om ) |
|
| 6 | elinel1 | |- ( B e. ( ~P _om i^i Fin ) -> B e. ~P _om ) |
|
| 7 | elpwi | |- ( A e. ~P _om -> A C_ _om ) |
|
| 8 | elpwi | |- ( B e. ~P _om -> B C_ _om ) |
|
| 9 | simpl | |- ( ( A C_ _om /\ B C_ _om ) -> A C_ _om ) |
|
| 10 | simpr | |- ( ( A C_ _om /\ B C_ _om ) -> B C_ _om ) |
|
| 11 | 9 10 | unssd | |- ( ( A C_ _om /\ B C_ _om ) -> ( A u. B ) C_ _om ) |
| 12 | 7 8 11 | syl2an | |- ( ( A e. ~P _om /\ B e. ~P _om ) -> ( A u. B ) C_ _om ) |
| 13 | 5 6 12 | syl2an | |- ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) -> ( A u. B ) C_ _om ) |
| 14 | 4 13 | elpwd | |- ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) -> ( A u. B ) e. ~P _om ) |
| 15 | 14 4 | elind | |- ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) -> ( A u. B ) e. ( ~P _om i^i Fin ) ) |